АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в к-рой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, к-рое выделяется в реакторе в результате цепной реакции деления ядер нек-рых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органич. топливе, АЭС работает на ядерном горючем (в осн. 233U, 235U. 239Рu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт • ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетич. ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органич. топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологич. целей мировой химич. пром-сти, к-рая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органич. топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит. увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, к-рая уже занимает заметное место в энергетич. балансе ряда пром. стран мира.

Первая в мире АЭС опытно-пром. назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преим. в воен. целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Между-нар. научно-технич. конференции по мирному использованию атомной энергии (авг. 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской пром. АЭС, а 26 апр. 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему. 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сент. 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт • ч электроэнергии (важнейший экономич. показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для пром. пользования, но и как демонстрац. объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В нояб. 1965 в г. Мелекессе Ульяновской обл. вступила в строй АЭС с водо-водяным реактором "кипящего" типа мощностью 50 Мвт; реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт).

За рубежом первая АЭС пром. назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора l, отбирается водой (теплоносителем) 1-го контура, к-рая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) гра-фито-водные с водяным теплоносителем и графитовым замедлителем; З) тя-желоврдные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется гл. обр. накопленным опытом в реакторостроснии,а также наличием необходимого пром. оборудования, сырьевых запасов и т. д. В СССР строят гл. обр. графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамич. цикл АЭС. Выбор верхней температурной границы термодинамич. цикла определяется максимально допустимой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор к-рой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и темп-рой. Тепловая схема АЭС о этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева

Рис. 3. Принципиальная тепловая схема АЭС с ядерным перегревом пара (2-й блок Белоярской АЭС): / - реактор; 2 - испарительный канал; 3 - пароперегревательный канал; 4-барабан-сепаратор; 5 - циркуляционный насос; 6 - деаэратор; 7 - турбина; 8 - конденсатор; 9 - конденсатный насос; 10 - регенеративный подогреватель низкого давления; 11 - питательный насос; 12 - регенеративные подогреватели высокого давления; 13 - генератор электрического тока.

(рис. 3). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанц. управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой; теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура цирку-ляц. контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличит. особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Бело-ярская АЭС и др.).

Для предохранения персонала АЭС от радиац. облучения реактор окружают биологической защитой, осн. материалом для к-рой служат бетон, вода, серпенти-новый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, к-рые отделены от остальных помещений АЭС биологич. защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в к-рой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиац. безопасности персоналом АЭС следит служба дозиметрич. контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение неск. секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологич. защиты, систем спец. вентиляции и аварийного расхолаживания и службы дозиметрич. контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит. особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. (см. вклейку к стр. 400) показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологич. защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор-турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспо-могат. оборудование и системы управления станцией.

Экономичность АЭС определяется её осн. технич. показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэфф. использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30 - 40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, напр. АЭС в пос. Билибино (Якут. АССР) с электрич. мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казах. ССР) электрич. мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 m воды из Каспийского м.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Междунар. атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Сов. Союзе осуществляется широкая программа ввода в строй крупных энер-гетич. блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для пром. АЭС.Физич. особенности таких реакторов позволяют осуществить расширенное воспроиз-во ядерного горючего (коэфф. воспроиз-ва от 1,3 до 1,7), что даёт возможность использовать не только 233U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-3, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению пром. АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской AЭC. Ведутся исследования реакторов для мощных АЭС, напр. в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Междунар. научно-технич. конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в авг. 1968 7-я Мировая энергетич. конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из осн. производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; К а л а-ф а т п Д. Д-, Термодинамические циклы атомных электростанций, М.- Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М.. 1968.

С. П. Кузнецов.




Смотреть больше слов в «Большой советской энциклопедии»

АТОМНАЯ ЭНЕРГИЯ →← АТОМНАЯ ФИЗИКА

Синонимы слова "АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ":

Смотреть что такое АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ в других словарях:

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

атомная электростанция сущ., кол-во синонимов: 4 • атомный гигант (4) • аэс (6) • мирный атом (4) • ядерка (6) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: атомный гигант, аэс, мирный атом, ядерка... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

В 1922 г. в Петрограде академик Ферсман прочитал доклад. Он назывался «Пути к науке будущего». Ученый предсказывал использование грандиозных запасов внутриатомной энергии. При сгорании ядерного топлива в урановом реакторе выделяется в 10 000 000 раз больше энергии, чем при сгорании равной по весу порции органического вещества в топке обычной тепловой электростанции. Условием работы атомного реактора, утверждал ученый, является цепная реакция деления ядра урана, для чего следует обстреливать уран?235 нейтронами. Последние, взаимодействуя с атомами урана, вызывают деление их ядер. Деление одного ядра, в свою очередь, вызывает деление других. При этом происходит выделение нейтронов. Для обеспечения самоподдерживающейся цепной реакции необходимо такое количество урана, критическая масса которого была бы около 50 кг. Уменьшить критическую массу можно, смешав уран с каким?либо неделящимся веществом. Принцип работы реактора был открыт Э. Ферми. В 1934 г. он вместе со своими сотрудниками Б. Понтекорво и Амальди исследовал радиоактивность различных элементов. Образцы представляли собой пустотелые цилиндры со вставленными в них источниками нейтронов. При облучении материала цилиндра нейтронами образовывались радиоактивные ядра. В ходе экспериментов было обнаружено, что активность материала зависит от предметов, стоящих вблизи цилиндра. Наибольшая радиоактивность была достигнута при погружении цилиндра в бассейн с водой. Ферми объяснил это тем, что, сталкиваясь с почти равными по весу атомами водорода, нейтрон теряет большую часть своей энергии. Его скорость равна примерно 2000 м/с. Такие нейтроны называют медленными, а нейтроны, образующиеся при делении и имеющие скорость 20 000 км/с, – быстрыми. Снижение скорости нейтронов позволяет увеличить количество нейтронов, взаимодействующих с ядрами, а следовательно, и число делящихся ядер. Открытие Ферми позволило построить реактор, в котором происходило удержание достаточного количества нейтронов, рождающихся при делении. Работы по созданию ядерного реактора велись в начале 40?х годов прошлого века в Германии, США и СССР. Немецкие ученые, спеша создать атомную бомбу, построили в подземной лаборатории Хайгерлох реактор, в котором в качестве замедлителя применялась «тяжелая вода» – соединение кислорода с дейтерием – тяжелым изотопом водорода. Не хватало критической массы: для осуществления самоподдерживающейся цепной реакции необходимо 1,5 тонны урана и 2 тонны тяжелой воды. В Норвегии в это же время был выведен из строя завод по производству тяжелой воды. В 1942 г. в Чикагском университете был запущен ядерный реактор, в котором в качестве замедлителя использовался особо чистый графит. В 1946 г. реактор такого же типа был запущен в СССР. Оба реактора гетерогенного типа: в них уран был собран в блоки?стержни, между которыми размещались блоки графита. Благодаря такой конструкции быстрые нейтроны замедляются в блоках графита, не поглощаясь атомами урана?238. В качестве замедлителя в таких реакторах применяется тяжелая вода. В гомогенных реакторах горючее в виде тонкого порошка находится во взвешенном состоянии в жидком замедлителе (обычно соль урана, равномерно распределенная в тяжелой воде). Позже появились реакторы, в которых использовался расплавленный висмут, содержащий торий и небольшое количество урана?233. Запуск реактора осуществлялся следующим образом: вначале реактор приводят в состояние надкритичности, вводя больше урана, чем это необходимо для поддержания цепной реакции. Мощность реактора возрастает. Для ее ограничения в реактор вводят поглотитель нейтронов – бор в количестве, достаточном для поддержания критического уровня работы реактора. Для управления процессом в рабочем объеме реактора предусмотрены пустоты для поглотителя – отверстия?тоннели, проходящие через весь реактор. Мощность регулируют, погружая стержни в тоннели или выводя их. В 1945 г., когда атомные бомбы уже уничтожили Хиросиму и Нагасаки, крупным американским ученым задали вопрос: «Удастся ли и когда использовать атомную энергию в мирных целях?». Почти все ученые назвали одну цифру: 50 лет (1995 г.). Почему же именно этот срок называли американцы? Американские специалисты руководствовались не столько техническими, сколько экономическими соображениями. Они исходили из того, что атомная энергия дороже энергии, вырабатываемой тепловыми или гидроэлектростанциями. Поэтому ее производство станет экономически обоснованным только тогда, когда начнут истощаться запасы нефти. Эксперты ошиблись: уже в 1954 г. в СССР в Обнинске была пущена в эксплуатацию первая атомная электростанция мощностью 5 мегаватт. Реактор первой советской атомной электростанции работал на обогащенном естественном уране, в котором содержание урана?235 было доведено до 5 %. Реактор находился в стальном баке диаметром 3 м и высотой 4,6 м. Он был заполнен графитом, в центральной его части было 128 рабочих каналов, туда опускались стержни урановых тепловыделяющих элементов. Эти стержни были окружены длинными графитовыми цилиндрами и образовывали активную зону диаметром 150 см и высотой 170 см. Работа реактора начиналась лишь после того, как в него опускали более 60 стержней. Общая загрузка урана в реактор составляла 550 кг. Суточный расход урана – примерно 30 г, что эквивалентно 100 т угля. Регулировка мощности реактора осуществлялась при помощи стержней из карбида бора, активно поглощающего нейтроны. В качестве теплоносителя в первичном контуре применялась циркулирующая вода, имевшая давление 100 атм и температуру 280–290 °C. В теплообменнике (парогенераторе) образовывался перегретый пар с давлением 12–13 атм и температурой 260–270 °C, поступавший в турбину электростанции. Полный КПД электростанции – 17–19 %. За первые два года эксплуатации Обнинская АЭС израсходовала несколько килограммов урана. Тепловая электростанция такой же мощности сожгла бы за тот же период более 75 тыс. т угля. В 1956 г. в Англии в Колдер?Холле была введена в эксплуатацию АЭС промышленного назначения мощностью 46 МВт. В 1957 г. заработала первая американская АЭС мощностью 60 МВт в Шиппингпорте. В реакторах, работающих на быстрых нейтронах, замедлитель отсутствует, а теплоносителем обычно является жидкий металл. Цепная реакция поддерживается непосредственно быстрыми нейтронами. В таком реакторе применяется практически чистый изотоп урана?235 или искусственно полученное вторичное ядерное горючее – плутоний?239 и уран?233. Это вторичное горючее получают в таком же реакторе в ходе процесса расширенного воспроизводства горючего. Такие реакторы получили название бридерные, или реакторы?размножители. В 1951 г. в США был построен первый опытный бридерный реактор, ас 1953 г. развернулись работы по созданию крупного реактора такого типа. В Советском Союзе в 1950–1960?е годы использовались реакторы на быстрых нейтронах типа «БР?1», «БР?2», «БР?5». Определив коэффициент воспроизводства и другие физические характеристики, советские ученые спроектировали реакторы на быстрых нейтронах мощностью в 50 и 250 тыс. кВт. Промышленные АЭС на быстрых нейтронах были построены в городах Шевченко и Белоярске. Одной из наиболее важных задач в области атомной техники является совершенствование методов очистки и переработки тепловыделяющих элементов реактора. В процессе работы ядерного реактора свойства топлива ухудшаются. В нем накапливаются продукты деления (шлаки). Они захватывают нейтроны, уменьшая их число и препятствуя протеканию самоподдерживающейся цепной реакции. Поэтому в реакторе периодически заменяют тепловыделяющие элементы (ТВЭЛы). На специальных химических заводах они подвергаются переработке с целью удаления осколков деления и выделения накопившихся плутония и урана. Это львиная доля расходов на эксплуатацию реактора. Первые исследовательские реакторы с графитовым или тяжело?водным замедлителем и естественным ураном были дорогими и громоздкими. Принципиально новым шагом явилось создание водоводяных реакторов. В них замедлителем и отражателем нейтронов, а также теплоносителем и частично защитой служит обычная вода. Помимо описанных выше водо?водяных и графито?водных реакторов также применяются и другие виды реакторов на тепловых нейтронах. Это тяжеловодные с водяным теплоносителем и тяжелой водой в качестве замедлителя и графито?газовые, в которых в качестве теплоносителя применяется газ (гелий или углекислый газ), а в качестве замедлителя – графит. В качестве теплоносителя и охладителя могут использоваться также жидкие или расплавленные металлы: натрий, свинец, калий. Выбор типа реактора определяется накопленным опытом в реакторостроении, наличием необходимого оборудования и запасами сырья. В СССР строились преимущественно графито?водные и водо?водяные реакторы, в США – водо?водяные, в Великобритании – графито?газовые. Атомные электростанции, в зависимости от системы теплопередачи, могут иметь одно?, двух– и трехконтурные схемы. Если теплоноситель – жидкий металл, то он в особом теплообменнике отдает тепло другому теплоносителю – газу или воде, использующимся в турбинах в виде пара или горячих газов. Такая схема с промежуточным теплообменником называется двухконтурной. Ее применение позволяет ограничиться установкой биологической защиты лишь для реактора и теплообменника и исключает ее необходимость для всего теплосилового оборудования. Для регулирования работы реактора применяются кадмиевые стержни или стержни из бора и гафния, изменяющие величину потока нейтронов. Биологическая защита реактора представляет собой слой вещества, отражающего нейтроны, и защитные слои веществ (бетона, свинца, воды, серпентинового песка). Оборудование реакторного контура устанавливается в герметичных боксах. Места возможной утечки контролируются специальными системами. При авариях в системе охлаждения реактора предусматривается быстрое глушение ядерной реакции. В 1960?е годы в мире стремительно строились мощные АЭС, каждая из которых состояла из нескольких блоков. Кроме выработки электроэнергии на некоторых АЭС устанавливались устройства для опреснения морской воды. Темпы строительства атомных электростанций резко упали после аварии в 1986 г. на Чернобыльской АЭС. При разгерметизации реактора в окружающую среду было выброшено огромное количество радиоактивных веществ. Это вызвало дискуссии о целесообразности применения ядерной энергии, влиянии атомной энергетики на окружающую среду. Возникли проблемы с переработкой и захоронением радиоактивных отходов. Некоторые страны отказались от строительства новых АЭС и стали консервировать действующие. Но растущее потребление электроэнергии и назревающий кризис добычи энергоносителей заставляют ученых и инженеров проводить дальнейшие исследования в области атомной энергетики. Наиболее актуальным направлением является осуществление управляемой термоядерной реакции.... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

а́томная электроста́нция (АЭС), электростанция, на которой ядерная энергия преобразуется в электрическую. Первичным источником энергии на АЭС служит... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

(АЭС) - электростанция, в к-рой атомная (ядерная) энергия преобразуется в электрическую. На АЭС теплота, выделяющаяся в ядерном реакторе в результате ц... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

а́томная электроста́нция (АЭС), электростанция, на которой атомная (ядерная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в яде... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

А́томная электроста́нция (АЭС), электростанция, на которой атомная (ядерная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерно... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

Атомная электростанция Атомная электростанция - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератор... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую, где тепло, выделяющееся в ядерном ректоре за счет деления атомных я... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1-я в мире АЭС мощнностью 5 МВт была пущена в СССР 27.6.1954 в г. Обнинск. АЭС составляют основу ядерной энергетики. Мощность крупнейших действующих многоблочных АЭС (1989) св. 9 ГВт.<br><br><br>... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

АТОМНАЯ электростанция (АЭС) - электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1-я в мире АЭС мощнностью 5 МВт была пущена в СССР 27.6.1954 в г. Обнинск. АЭС составляют основу ядерной энергетики. Мощность крупнейших действующих многоблочных АЭС (1989) св. 9 ГВт.<br>... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

выдающееся мировое изобретение русских ученых под руководством И.В. Курчатова, впервые в мире создана в 1954 в Обнинске.Источник: Энциклопедия "Русская... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

атомная электростанцияתַחֲנַת-כּוֹחַ גַרעִינִית נ'Синонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomic power plant, A-plant, nuclear power plant, atomic power station, nuclear power station, nuclear steam station* * *nuclear energy stationСинонимы... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

(АЭС) Nuclear Power Plant атомная станция, предназначенная для производства электроэнергии. Термины атомной энергетики. - Концерн Росэнергоатом,2010 Синонимы: атомный гигант, аэс, мирный атом, ядерка... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

原子能发电站 yuánzǐnéng fādiànzhàn, 核电厂 hédiànchǎngСинонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomic power plantСинонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomkraftstasjonСинонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

central nuclearСинонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomic power station, nuclear energy station, atomic power plant, atomic power-station, nuclear power-station

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

атомная электростанцияAtomkraftwerkСинонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

выдающееся мировое изобретение русских ученых под руководством И.В. Курчатова, впервые в мире создана в 1954 в Обнинске.

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomic power plant, nuclear power plant, nuclear power station

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

centrale atomica {elettronucleare}

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

centrale atomique [nucléaire], usine d’énergie atomique

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

Atomenergiewerk, Atomkraftwerk, Atomwerk, Kernkraftwerk

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

а́томна електроста́нція Синонимы: атомный гигант, аэс, мирный атом, ядерка

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

atomic power plant, nuclear power plant, nuclear power station

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

central atómica, central electronuclear, estación atómica

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

эн. атом электрстансасывоен. атом электр станциясы

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

Atomenergiewerk, Atomkraftwerk, Atomwerk, Kernkraftwerk

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

сокр. АЭС Kernkraftwerk n (KKW); Atomkraftwerk n.

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

атом электрстансасы

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)

ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)

- электростанция, на которой ядерная(атомная) энергия преобразуется в электрическую. На АЭС тепло,выделяющееся в ядерном реакторе, используется для получения водного пара,вращающего турбогенератор. 1-я в мире АЭС мощнностью 5 МВт была пущена вСССР 27.6.1954 в г. Обнинск. АЭС составляют основу ядерной энергетики.Мощность крупнейших действующих многоблочных АЭС (1989) св. 9 ГВт.... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1-я в мире АЭС мощнностью 5 МВт была пущена в СССР 27.6.1954 в г. Обнинск. АЭС составляют основу ядерной энергетики. Мощность крупнейших действующих многоблочных АЭС (1989) св. 9 ГВт.... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)

Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является ат... смотреть

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС) , электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1-я в мире АЭС мощнностью 5 МВт была пущена в СССР 27.6.1954 в г. Обнинск. АЭС составляют основу ядерной энергетики. Мощность крупнейших действующих многоблочных АЭС (1989) св. 9 ГВт.... смотреть

T: 291