БИООРИЕНТАЦИЯ

БИООРИЕНТАЦИЯ (от био... и ориентация), способность организмов определять своё местонахождение в пространстве, выбирать оптимальное положение по отношению к действующим на него силам (факторам среды) и определять биологически целесообразное направление движения. Б.- одно из осн. условий приспособления организмов к окружающей среде (адаптации), что может осуществляться тремя путями: изменением состояния организма в соответствии с меняющимися условиями (морфо-физиол. адаптация); сменой мест обитания (см. Кочёвки животных, Миграции животных): изменением обстановки путём образования скоплений (стай, стад и т. п.) или постройки убежищ (нор, гнёзд и т. п.). Б. основана на свойстве раздражимости и восприятия внеш. воздействий физич., химич. и биол. природы. У высших беспозвоночных (членистоногие, моллюски) и у позвоночных животных восприятие, или рецепция, внеш. воздействий (сигналов) осуществляется спец. органами чувств, а их реакции Б. приобретают характер сложных инстинктов, лежащих в основе бионавигации. Выбор направления при передвижениях осуществляется на основании рецепции химич., механич. (тактильных), акустич., электрич. или оптич. раздражителей (сигналов) и их локации, т. е. определения положения по отношению к животному (см. Биолокация). Работа большинства механизмов локации обеспечивается парностью органов чувств (зрения, слуха, равновесия и др.), позволяющей сравнивать сигналы, сопоставляя силу, частотную характеристику и др. параметры сигналов, поступивших в правый и левый органы чувств, и т. о. определять направление их источника.

Лит.: Протасов В. Р., Биоакустика рыб, М., 1965; Бионика. [Сб. ст.], М., 1965; Мазохин-Поршняков Г. А., Зрение насекомых, М., 1965; Глезер В. Д., Механизмы опознания зрительных образов, М.- Л., 1966; Райт Р. X., Наука о запахах, пер. с англ.. М., 1966; Мили Л. Дж. и М и л н М. Д ж., Чувства животных и человека, пер. с англ., М., 1966; С л о н и м А. Д., Инстинкт загадки врожденного поведения организмов, Л., 1967; Вопросы бионики. [Сб. ст.], М., 1967; Мартека В., Бионика, пер. с англ., М., 1967; Протасов В. Р., Зрение и ближняя ориентация рыб, М., 1968; Тинберген Н., Поведение животных, пер. с англ., М., 1969.

Н. П. Наумов.

БИОПОЛИМЕРЫ,

высокомолекулярные природные соединения, являющиеся структурной основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б.- гликопротеиды, липопротеяды, гликолипиды и др.

Биологические функции Б. Нуклеиновые кислоты выполняют в клетке генетич. функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте -ДНК (иногда в рибонуклеиновой кислоте - РНК) определяет (в форме генетического кода) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём оиохим. процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации) молекул ДНК. Генетич. информация с ДНК переносится на РНК, синтезируемую на ДНК как на матрице (транскрипция). Эта т. н. информационная РНК (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки - рибосомах (трансляция) при участии транспортной РНК (т-РНК). Биол. изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК (см. Мутация).

Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химич. реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократит, функцию, превращая химич. энергию в механич. работу и обеспечивая подвижность организма в целом или его частей. Белки - осн. материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеид-ными мембранами, рибосомы построены из белка и РНК и т. д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.)и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), "запрещая" или "разрешая" проявление того или иного гена. В высших организмах имеются белки - переносчики тех или иных веществ (напр., гемоглобин - переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и нек-рые др. функции. Белки и нуклеиновые к-ты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохим. системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химич. синтеза белков и нуклеиновых к-т.

Первичная структура Б. Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые к-ты являются линейными гетерополимерами-сахарофосфатными цепочками, к звеньям к-рых присоединены боковые группы -азотистые основания: аденин и тимин (в РНК - урацил), гуанин и цитозин; в нек-рых случаях (гл. обр. в т-РНК) боковые группы могут быть представлены др. азотистыми основаниями. Белки -также гетерополимеры; молекулы их образованы одной или неск. полипептидными цепочками, соединёнными дисульфид-ными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев - остатков аминокислот. Мол. масса ДНК варьирует от неск. млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК с мол. массой в неск. млрд. ДНК высших организмов может иметь и большую мол. массу, ноизмерить её пока не удалось из-за разрывов в молекулах ДНК, возникающих при их выделении. Рибосомные РНК имеют мол. массу от 600 тыс. до 1,1 млн., информационная (и-РНК) - от сотен тысяч до неск. миллионов, транспортная (т-РНК) - ок. 25 тыс. Мол. масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, б. ч. гидрофобными, связями.

К о н ф о р м а ц и я, т. е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от хим. строения и внеш. условий молекулы Б. могут находиться либо в одной или в неск. преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: напр., глобулярное строение белков, двойная спираль ДНК), либо принимать многие б. или м, равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные н нек-рые др. имеют, как правило, глобулярную структуру. Для ряда белков -гемоглобин, миоглобин, лизоцим, рибонуклеаза и др.- эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водносолевом растворе (кулоновские и диполь-ные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. ц. четвертичную структуру, при к-рой неск. глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис. 1). Пространств, структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров. В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и др. веществами) конформационные сдвиги и изменения.

Рис. 1. Образование четвертичной структуры глобулярных белков. Заштрихованы редко -полярные (гидрофильные ) части белковых глобул, густо - неполярные (гидрофобные) области.

Пространств, структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика - Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями - аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика - Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

Денатурация Б. Нарушение нативной пространств, структуры Б. при различных воздействиях (повышение темп-ры, изменение концентрации металлов, кислотности раствора и др.) наз. денатурацией и в ряде случаев обратимо (обратный процесс наз. ренатурацией; рис. 2). Молекулы Б.- кооперативные системы; поведение их зависит от взаимодействий составляющих частей. Коопера-тивность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействий зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (напр., переходы сс-спираль - b-структура, а-спираль - клубок, b-структура -клубок для полипептидов, переход глобула - клубок для глобулярных белков, переход спираль - клубок для нуклеиновых к-т). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые к-ты,полипептиды), претерпевающие переход спираль - клубок, разбиваются на чередующиеся спиральные и клубкообразные участки (рис. 3).

Рис. 2. Схема денатурации и ренатурации глобулярного белка (на примере фермента рибонуклеазы).

Рис. 3. Схема перехода спираль - клубок для ДНК: 1 -нативное состояние (вместо двойной спирали для простоты изображена "верёвочная лестница"); 2 - состояние ДНК в области перехода; 3 - денатурированное состояние (однонитевые клубки).

Рис. 4. Кривые перехода спираль - клубок (денатурации) нуклеиновых кислот из различных организмов: 1 - бактериальная ДНК; 2 - ДНК из зобной железы телёнка; 3 - РНК вируса табачной мозапки.

Переход спираль - клубок в ДНК наблюдается при повышения темп-ры, добавлении в раствор к-ты или щёлочи, а также под влиянием др. денатурирующих агентов. Этот переход в гомополи-нуклеотидах происходит при нагревании в интервале десятых долей °С, в фаговых и бактериальных ДНК - в интервале 3-5°С (рис. 3), в ДНК высших организмов - в интервале 10-15°С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль - клубок в различных видах РНК носит менее кооперативный характер (рис. 4) и происходит в более широком интервале темп-рных или др. денатурирующих воздействий.

Б.- полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатич. взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

Строение и биологи ч. функции Б. Строение Б.- результат длит, эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологич. задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биол. функциями - с другой, существуют тесные связи, исследование к-рых - одна из гл. задач молекулярной биологии. Установление таких связей в ДНК позволило понять осн. механизмы репликации, транскрипции и трансляции, а также мутагенеза и нек-рых др. важнейших биологич. процессов. Линейная структура молекулы ДНК обеспечивает запись генетич. информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) мн. копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетич. информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химич. связей обеспечивают гибкость и лабильность пространств. структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространств, структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения хим. реакций, осуществляемого ферментами.

Методы исследования Б. При исследовании строения и конфор-мацнонных превращений Б. широко используются как очищенные природные Б., так и их синтетич. модели, к-рые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетич. гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптич. активности, люминесценции, методы светорассеяния и динамич. двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химич. методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетич. полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретич. физики (статистич. физики, термодинамики, квантовой механики и др.).

Лит.: Б р е с л е р С. Е.. Введение в молекулярную биологию, М. - Л., 1966; В о л ь к е н ш т е й н М. В., Молекулы и жизнь, М., 1965; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Физические методы исследования белков и нуклеиновых кислот, М., 1967. Ю. С. Лазуркин.




Смотреть больше слов в «Большой советской энциклопедии»

БИОПСИЯ →← БИООРГАНИЧЕСКАЯ ХИМИЯ

Синонимы слова "БИООРИЕНТАЦИЯ":

Смотреть что такое БИООРИЕНТАЦИЯ в других словарях:

БИООРИЕНТАЦИЯ

(от Био... и ориентация (См. Ориентация животных))        способность организмов определять своё местонахождение в пространстве, выбирать оптимальное п... смотреть

БИООРИЕНТАЦИЯ

биоориентация сущ., кол-во синонимов: 1 • ориентация (24) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: ориентация

БИООРИЕНТАЦИЯ

Риони Рио Ринит Рин Риа Ретина Рет Реотан Реобионт Рента Рено Ренат Ребята Реба Рая Рация Рацион Рацио Рацея Ратин Рао Рант Рано Ранец Ранет Раия Рабин Раб Оцет Отрицание Отобрание Отирание Отец Отбор Отбирание Отар Орт Орнат Орн Ория Орион Ориентация Орбита Орание Ооцит Оон Онтарио Онер Обтирание Оброн Обратно Обрат Обр Обоянц Обоянец Оборина Обора Обои Обитание Обирание Обет Обертон Оберон Обер Обаяние Оао Нтц Нтр Нто Нотация Нота Нория Норит Нора Ниц Нитро Нитрация Нит Ниобат Нии Нея Нети Нер Небо Нация Наци Натрое Натр Нато Наитие Наирит Наиб Набор Наб Итр Итерация Ирония Ирон Ирита Ирина Ирбитец Иранец Иран Ионит Иониец Ионатор Ион Иня Интер Инта Иния Инициатор Инерция Иена Иберия Ибер Ера Енот Бтр Бряцание Брянец Броня Брон Британия Британец Бриония Братия Братец Брат Бра Боярин Бояр Бот Боря Борт Борона Борнит Борн Борин Борец Борацит Борат Бор Бон Боец Боа Бия Биотрон Биотин Биота Биоориентация Бионт Био Бинт Бетон Бетаин Бета Берцо Берт Берн Бер Бен Баян Батя Батор Батоно Батон Бат Баронет Барон Баро Барн Баритон Барит Барион Барин Бар Бант Рита Ритина Ритон Аят Рицин Рия Роба Ацетон Атония Арт Робин Робиния Робот Рон Арония Рот Рота Ротация Ротон Арон Арно Арен Аоот Таир Танцор Аня Анти Антея Анри Аир Аборт Абиетин Таня Ант Аон Танец Таец Ариец Арин Арион Ария Табор Рябина... смотреть

БИООРИЕНТАЦИЯ

1) Орфографическая запись слова: биоориентация2) Ударение в слове: биоориент`ация3) Деление слова на слоги (перенос слова): биоориентация4) Фонетическа... смотреть

БИООРИЕНТАЦИЯ

приставка - БИО; корень - ОРИЕНТ; суффикс - АЦИ; окончание - Я; Основа слова: БИООРИЕНТАЦИВычисленный способ образования слова: Приставочно-суффиксальн... смотреть

БИООРИЕНТАЦИЯ

Ударение в слове: биоориент`ацияУдарение падает на букву: аБезударные гласные в слове: биоориент`ация

БИООРИЕНТАЦИЯ

биоориента/ция, -и Синонимы: ориентация

БИООРИЕНТАЦИЯ

биоориент'ация, -иСинонимы: ориентация

БИООРИЕНТАЦИЯ

биоориентацияСинонимы: ориентация

БИООРИЕНТАЦИЯ

Начальная форма - Биоориентация, единственное число, женский род, именительный падеж, неодушевленное

БИООРИЕНТАЦИЯ

生物定向Синонимы: ориентация

БИООРИЕНТАЦИЯ

биоориентация биоориент`ация, -и

БИООРИЕНТАЦИЯ

біяарыентацыя, жен.

БИООРИЕНТАЦИЯ

Біяарыентацыя

T: 460