ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ, принцип, устанавливающий необратимость макроскопич. процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности темп-р (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоу левой теплоты и т. д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении (см. Необратимые процессы).

Исторически В. н. т. возникло из анализа работы тепловых машин (С. Карно, 1824). Существует неск. эквивалентных формулировок В. н. т. Само назв. "В. н. т." и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу: невозможен процесс, при к-ром теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом самопроизвольный переход не следует понимать в узком смысле: невозможен не только непосредств. переход, его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло ещё к.-л. изменений. Иными словами, невозможно провести процесс, единств, следствием к-рого был бы переход теплоты от более холодного тела к более нагретому. Если бы (в нарушение положения Клаузиуса) такой процесс оказался возможным, то можно было бы, разделив один тепловой резервуар на 2 части и переводя теплоту из одной в другую, получить 2 резервуара с различными темп-рами. Это позволило бы, в свою очередь, осуществить Карно цикл и получить механич. работу с помощью периодически действующей (т. е. многократно возвращающейся к исходному состоянию) машины за счёт внутренней энергии одного теплового резервуара. Поскольку это невозможно, в природе невозможны процессы, единств, следствием к-рых был бы подъём груза (т. е. механич. работа), произведённый за счёт охлаждения теплового резервуара (такова формулировка В. н. т., данная У. Томсоном, 1851). Обратно, если бы можно было получить механич. работу за счёт внутр. энергии одного теплового резервуара (в противоречии с В. н. т. по Томсону), то можно было бы нарушить и положение Клаузиуса. Механич. работу, полученную за счёт теплоты от более холодного резервуара, можно было бы использовать для нагревания более тёплого резервуара (напр., трением) и тем самым осуществить переход теплоты от холодного тела к нагретому. Обе приведённые формулировки В. н. т., являясь эквивалентными, подчёркивают существ, различие в возможности реализации энергии, полученной за счёт внеш. источников работы, и энергии беспорядочного (теплового) движения частиц тела.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механич. работы (без изменения состояния др. тел) означала бы возможность реализации т. н. вечного двигателя 2-го рода, работа к-рого не противоречила бы закону сохранения энергии. Так, работа двигателя корабля за счёт охлаждения забортной воды океана - доступного и практически неисчерпаемого резервуара внутр. энергии - не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит В. н. т. В реальном тепловом двигателе процесс превращения теплоты в работу обязательно сопряжён с передачей определённого количества теплоты внеш. среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внеш. среда нагревается, что находится в согласии со В. н. т. Следовательно, В. н. т. можно формулировать и как невозможность вечного двигателя 2-го рода. Г. А. Зисман. В совр. термодинамике В. н. т. формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, к-рую Клаузиус назвал энтропией (обозначается S). Согласно этому закону, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии бS>=0; знак равенства имеет место для обратимых процессов. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопич. процессы в такой системе, согласно В. н. т., невозможны. Для незамкнутой системы направление возможных процессов, а также условия равновесия могут быть получены из закона возрастания энтропии, применённого к составной замкнутой системе, получаемой путём присоединения всех тел, участвующих в процессе. Это приводит в общем случае необратимых процессов к неравенствам

где бQ - переданное системе количество теплоты, бА - совершённая над ней работа, бU - изменение её внутр. энергии, Т - абс. темп-pa; знак равенства относится к обратимым процессам.

Важные следствия даёт применение В. н. т. к системам, находящимся в фиксированных внеш. условиях. Напр., для систем с фиксированной темп-рой и объёмом неравенство (1‘) приобретает вид бF<=O, где F = U-TS - свободная энергия системы. Т. о., в этих условиях направление реальных процессов определяется убыванием свободной энергии, а состояние равновесия - минимумом этой величины (см. Потенциалы термодинамические).

Приведённые в начале статьи формулировки В. н. т. являются частным следствием общего закона возрастания энтропии.

В. н. т., несмотря на свою общность, не имеет абс. характера, и отклонения от него (флуктуации) являются вполне закономерными. Примерами таких флуктуационных процессов являются броуновское движение тяжёлых частиц, равновесное тепловое излучение нагретых тел (в том числе радиошумы), возникновение зародышей новой фазы при фазовых переходах, самопроизвольные флуктуации темп-ры и давления в равновесной системе и т. д.

Статистическая физика, построенная на анализе микроскопич. механизма явлений, происходящих в макроскопич. телах, и выяснившая физ. сущность энтропии, позволила понять природу В. н. т., определить пределы его применимости и устранить кажущееся противоречие между механич. обратимостью любого, сколь угодно сложного микроскопич. процесса и термодинамич. необратимостью процессов в макротелах.

Как показывает статистич. термодинамика (Л. Болъцман, Дж. Гиббс), энтропия системы связана со статистическим весом Р макроскопич. состояния: S=klnP(k - Болъцмана постоянная). Статистич. вес Р пропорционален числу различных микроскопич. реализаций данного состояния макроскопич. системы (напр., различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и др. термодинамич. параметров газа), т. е. характеризует как бы степень неточности микроскопич. описания макросостояния. Для замкнутой системы вероятность термодинамическая W данного макросостояния пропорциональна его статистич. весу и определяется энтропией системы: W~exp(S/k). (2) Т. о., закон возрастания энтропия имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Максимально вероятным является состояние равновесия; за достаточно большой промежуток времени любая замкнутая система достигает этого состояния .

Энтропия является величиной аддитивной (см. Аддитивность), она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относит, изменение энтропии, приходящейся на одну частицу, существенно меняет её абс. величину; изменение же энтропии, стоящей в показателе экспоненты в ур-нии (2), приводит к изменению вероятности данного макросостояния W в огромное число раз. Именно этот факт является причиной того, что для системы с большим числом частиц следствия В. н. т. практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абс. изменением энтропии. Ср. значения частоты и размеров этих флуктуации являются таким же достоверным следствием статистич. термодинамики, как и само В. н. т.

Проиллюстрируем сказанное примером, позволяющим оценить масштабы величин, определяющих точность В. н. т. и отклонения от него. Рассмотрим флук-туационный процесс, в результате к-рого N частиц, первоначально занимающих объём V, равный 1 мкм3 (т. е. 10-18 м3), сконцентрируется самопроизвольно в половине этого объёма. Отношение статистич. весов начального (1) и конечного (2) состояний:

Pt/P2 = VN / (V/2)N=2N

поэтому изменение энтропии дельта S/k=NiN2 и отношение вероятностей W1/W2 =2N. Если время пролёта частицы через объём V, т.е.время, в течение к-рого сохраняется данная флуктуация, t = 10-8 сек, то среднее время ожидания такой флуктуации t =2N-т ~10°,3N*t. При числе частиц N = = 30, t = 10 сек, при N = 100, t~1022сек~ ~ 1015 лет. Если же учесть, что при атм. давлении число частиц газа в 1 мкм3 составляет N~108, то время ожидания указанного события t~103*107 лет.

Буквальное применение В. н. т. к Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности "тепловой смерти Вселенной", является неправомерным, т. к. любая сколь угодно большая часть Вселенной не является сама по себе замкнутой и её приближение к состоянию теплового равновесия, даже не говоря о флуктуациях, не является абсолютным.

Термодинамическое же описание Вселенной как целого возможно лишь в рамках общей теории относительности, в к-рой вывод о приближении энтропии к максимуму не имеет места. И.М.Лифшиц.

Лит.: П л а н к М., Введение в теоретическую физику, 2 изд., ч. 5, М.- Л., 1935; Френкель Я. И., Статистическая физика, М.-Л., 1948; Ландау Л., Лифшиц Е., Статистическая физика, М.- Л., 1951; Леонтович М. А., Введение в термодинамику, 2 изд., М.- Л., 1952; Самойлович А. Г., Термодинамика н статистическая физика, М., 1953; Смолуковский М., Границы справедливости второго начала термодинамики, "Успехи физических наук", 1967, т. 93, в. 4.




Смотреть больше слов в «Большой советской энциклопедии»

ВТОРОЕ СЕРБСКОЕ ВОССТАНИЕ 1815 →← ВТОРОЕ ИЗДАНИЕ КРЕПОСТНИЧЕСТВА

Смотреть что такое ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ в других словарях:

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

        принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трени... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

устанавливает существование энтропии как ф-ции состояния макроскопич. системы и вводит понятие абс. термодинамич. т-ры. Утверждает, что все процессы... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

один из осн. законов термодинамики; устанавливает необратимость макроскопич. процессов, протекающих с конечной скоростью: процессы, связанные с... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

один из основных законов термодинамики, устанавливающий необратимость макроскопических тепловых процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоуле-ва тепла, из-за электрической проводимости среды, в которой существует электромагнитное поле) обратимых процессов процессы, связанные с теплообменом, с трением, диффузией газов, расширением газов в пустоту, выделением джоулева тепла и т. д., — необратимы, т. е. могут самопроизвольно протекать только в одну сторону, в одном направлении. Благодаря достаточной сложности указанного явления имеется несколько эквивалентных формулировок этого начала: 1) (исторически первая из формулировок и само название закона как начала принадлежат немецкому физику Р. Клаузиусу) невозможен процесс, при котором тепло самопроизвольно переходило бы от тел более холодных к телам более нагретым без каких-либо изменений в системе или в окружающей среде; 2) в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (при протекании в ней обратимых равновесных процессов), либо возрастает (при неравновесных процессах) и состояние равновесия достигает максимума — формулировка начала в виде наиболее общего закона как закона возрастания энтропии; 3) невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответствующему охлаждению теплового резервуара (формулировка У. Том-сона, М. Планка); 4) невозможно построить вечный двигатель 2-го рода (В. Оствальд). Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006.... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

один из осн. законов термодинамики, согласно к-рому невозможно создать вечный двигатель 2-го рода. Существует ряд эквивалентных формулировок В. н. т., ... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

один из основных законов термодинамики, устанавливает существование энтропии как функции состояния макроскопич. системы и определяет для всех протекающ... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ - один из основных законов термодинамики, закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигает максимума. Другие эквивалентные формулировки:...1) невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус);<p>2)] невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответственно охлаждению теплового резервуара (У. Томсон, М. Планк);</p><p>3) невозможно построить вечный двигатель 2-го рода (В. Оствальд).<br></p>... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ, один из основных законов термодинамики, закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигает максимума. Другие эквивалентные формулировки:...1) невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус);...2) невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответственно охлаждению теплового резервуара (У. Томсон, М. Планк);...3) невозможно построить вечный двигатель 2-го рода (В. Оствальд).<br><br><br>... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ, один из основных законов термодинамики, закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигает максимума. Другие эквивалентные формулировки:...1) невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус);...2) невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответственно охлаждению теплового резервуара (У. Томсон, М. Планк);...3) невозможно построить вечный двигатель 2-го рода (В. Оствальд).... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ , один из основных законов термодинамики, закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигает максимума. Другие эквивалентные формулировки:...1) невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус);...2) невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответственно охлаждению теплового резервуара (У. Томсон, М. Планк);...3) невозможно построить вечный двигатель 2-го рода (В. Оствальд).... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

один из основных законов термодинамики, устанавливающий необратимость реальных термодинамических процессов. Второе начало термодинамики сформулировано как закон природы французским физиком и инженером H. Л. С. Карно (1796 — 1832) в 1824г., немецким физиком P. Клаузиусом (1822 — 1888) в 1850г. и английским физиком У. Томсоном (1824 — 1907) в 1851г. в различных, но эквивалентных формулировках: - процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, т. е. теплота не может самопроизвольно переходить от более холодного тела к более горячему (принцип Клаузиуса); - процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно полностью преобразовать в работу все тепло, взятое от тела, не производя никаких других изменений состояния системы (принцип Томсона). ... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

- один из основных законов термодинамики,закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом имеханическом отношении, системе энтропия либо остается неизменной (если всистеме протекают обратимые, равновесные процессы), либо возрастает (принеравновесных процессах) и в состоянии равновесия достигает максимума.Другие эквивалентные формулировки:...1) невозможен переход теплоты от телаболее холодного к телу более нагретому без каких-либо других изменений всистеме или окружающей среде (Р. Клаузиус);...2) невозможно создатьпериодически действующую (совершающую какой-либо термодинамический цикл)машину, вся деятельность которой сводилась бы к поднятию некоторого груза(механической работе) и соответственно охлаждению теплового резервуара (У.Томсон, М. Планк);...3) невозможно построить вечный двигатель 2-го рода(В. Оствальд).... смотреть

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

second law of thermodynamics, second principle of thermodynamics

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Б. Грин Закон, согласно которому полная энтропия постоянно растет.

T: 211