ДИФРАКЦИЯ ЧАСТИЦ

ДИФРАКЦИЯ ЧАСТИЦ, рассеяние микрочастиц (электронов, нейтронов, атомов и т. п.) кристаллами или молекулами жидкостей и газов, при к-ром из начального пучка частиц данного типа возникают дополнит, отклонённые пучки этих частиц; направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.

Д. ч. может быть понята лишь на основе квантовой теории. Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т. д. Дифракция при рассеянии частиц, с точки зрения классич. физики, невозможна.

Квантовая механика устранила абс. грань между волной и частицей. Осн. положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях, напр. при наблюдении их движения в камере Вильсона или при измерении электрич. заряда в фотоэффекте, может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции,- только на основе представления о волнах. Идея "волн материи" была высказана франц. физиком Л. де Бройлем в 1924 и вскоре получила блестящее подтверждение в опытах по Д. ч.

Согласно квантовой механике, свободное движение частицы с массой т и импульсом р = mv (где v - скорость частицы) можно представить как плоскую монохроматич. волну w0 (волну де Брой-ля) с длиной волны

Х = h/p, (1) распространяющуюся в том же направлении (напр., в направлении оси x), в к-ром движется частица (рис. 1). Здесь h -Планка постоянная. Зависимость w0от координаты х даётся формулой

направлен в сторону распространения волны, или вдоль движения частицы.

Рис. 1. Сопоставление волны и свободно движущейся частицы. Вверху показано прямолинейное движение частицы с массой m и импульсом p=mv (v - скорость частицы), внизу - распространение соответствующей ей "материальной волны" w0 ~COS k0x с длинной волны X = h/p.

Т. о., волновой вектор монохроматич. волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

Поскольку кинетич. энергия сравнительно медленно движущейся частицы Е = mv2/2, длину волны можно выразить и через энергию:

При взаимодействии частицы с нек-рым объектом - с кристаллом, молекулой и т. п. - её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрич. закономерности Д. ч. ничем не отличаются от закономерностей дифракции любых волн (см. Дифракция волн). Общим условием дифракции волн любой природы является соизмеримость длины падающей волны X с расстоянием d между рассеивающими центрами: X~<d. Опыты по дифракции частиц и их кван-товомеханическая интерпретация. Первым опытом по Д. ч., блестяще подтвердившим исходную идею квантовой механики - корпускулярно-волновой дуализм, явился опыт амер. физиков К. Дэвиссона и Л. Джермера (1927) по дифракции электронов на монокристаллах никеля (рис. 2). Если ускорять электроны электрич. полем с напряжением V, то они приобретут кинетич. энергию Е = eV (е - заряд электрона), что после подстановки в равенство (4) числовых значений лает

Рис. 2. Схема впыта Дэвиссона - Джермера: К-монокристалл никеля; Л - источник электронов; В - приёмник электронов; О-угол отклонения электронных пучков. Пучок электронов падает перпендикулярно отшлифованной плоскости кристалла S. При поворотах кристалла вокруг оси О гальванометр, присоединённый к приёмнику В, даёт периодически возникающие максимумы.

Здесь V выражено в в, а X - в А (1А = = 10-8с.м). При напряжениях V порядка 100 в, к-рые использовались в этих опытах, получаются т. н. "медленные" электроны с X порядка lA. Эта величина близка к межатомным расстояниям d в кристаллах, к-рые составляют неск. А и менее, и соотношение X~<d, необходимое для возникновения дифракции, выполняется. Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кри-сталлич. решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах параллельных кри-сталлографич. плоскостей, на к-рых в строгом порядке расположены рассеивающие центры. Условием наблюдения дифракционного максимума при отражении от кристалла является Брэгга - Вулъфа условие:

здесь 6 - угол, под к-рым падает пучок электронов на данную кристаллографич. плоскость (угол скольжения), a. d - расстояние между соответствующими кристаллографич. плоскостями.

Рис. 3. Запись дифракционных максимумов в опыте Дэвиссона-Джермера по дифракции электронов при различных углах поворота кристалла ф для двух значений угла отклонения электронов в и двух ускоряющих напряжений V. Максимумы отвечают отражению от различных кристаллографич. плоскостей, индексы которых указаны в скобках.

В опыте Дэвиссона и Джермера при "отражении" электронов от поверхности кристалла никеля при определённых углах отражения возникали максимумы (рис. 3). Эти максимумы отражённых пучков электронов соответствовали формуле (6), и их появление не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции; т. о., волновые свойства частиц - электронов - были доказаны экспериментом.

При более высоких ускоряющих электрич. напряжениях (десятках кв) электроны приобретают достаточную кинетич. энергию, чтобы проникать сквозь тонкие плёнки вещества (толщиной порядка 10-5см, т. е. тысячи А). Тогда возникает т. н. дифракция быстрых электронов на прохождение (рис. 4), к-рую на поликристаллич. плёнках алюминия и золота впервые исследовали английский учёный Дж. Дж. Томсон и советский физик П. С. Тарта-ковский.

Рис. 4. Дифракционная картина, образованная пучком электронов (ускоряющее напряжение 60 кв, Х=0,05 А) при прохождении через монокристальную плёнку моногидрата, хлористого бария. Центральное пятно-след начального пучка, остальные пятна-следы пучков, дифрагированных различными системами плоскостей кристалла.

Вскоре после этого удалось наблюдать и явления дифракции атомов и молекул. Атомам с массой М, находящимся в газообразном состоянии в сосуде при абс. темп-ре Т, соответствует, по формуле (4), длина волны

где k - Больцмана постоянная (т. к. средняя кинетическая энергия атома Е =3/2kT). Для лёгких атомов и молекул (Н, Н2, Не) и темп-р в сотни градусов Кельвина длина волны X также составляет около lA. Дифрагирующие атомы или молекулы практически не проникают в глубь кристалла; поэтому можно считать, что их дифракция происходит при рассеянии от поверхности кристалла, т. е. как на плоской дифракционной решётке.

Рис. 5. Принципиальная схема прибора для исследования дифракции атомных или молекулярных пучков: Л-атомный или молекулярный пучок; К-кристалл; О-капилляр, подводящий газ; D-диафрагма; R-приёмник, соединённый с манометром. Манометр измеряет давление, созданное дифрагированным пучком.

Выпущенный из сосуда и сформированный с помощью диафрагм молекулярный или атомный пучок (см. Молекулярные пучки) направляют на кристалл и тем или иным способом фиксируют "отражённые" дифракционные пучки (рис. 5). Таким путём немецкие учёные О. Штерн и И. Эстерман, а также др. исследователи на рубеже 30-х гг. наблюдали дифракцию атомных и молекулярных пучков (рис. 6).

Позже наблюдалась дифракция протонов, а также дифракция нейтронов (рис. 7), получившая широкое распространение как один из методов исследования структуры вещества.

Так было доказано экспериментально, что волновые свойства присущи всем без исключения микрочастицам.

В широком смысле слова дифракционное рассеяние всегда имеет место при упругом рассеянии различных элементарных частиц атомами и атомными ядрами, а также друг другом. С другой стороны, представление о корпускулярно-волновом дуализме материи укрепилось при анализе явлений, всегда считавшихся типично волновыми, напр, дифракции рентгеновских лучей - коротких электромагнитных волн с длиной волны X ~ "0,5-5А. В то же время начальный и рассеянный пучки рентгеновских лучей можно рассматривать и регистрировать как поток частиц - фотонов, определяя с помощью счётчиков фотонов число фотонов рентгеновского излучения в этих пучках.

Следует подчеркнуть, что волновые свойства присущи каждой частице в отдельности. Это было подтверждено опытом В. А. Фабриканта (1947) по дифракции электронов, поочерёдно летящих через образец.

Рис. 6. Дифракция на кристалле фтористого лития атомов гелия (a) и молекул водорода при двух значениях абсолютной температуры Т (6). По оси абсцисс отложен угол дифракции O, а по оси ординат-интенсивность дифрагированных пучков (в сантиметрах отклонения стрелки измерительного прибора). Кроме пика при 9 = 0°, обязанного зеркальному отражению начального пучка, наблюдаются два боковых дифракционных лика. При Т = 580 К боковые пики лежат несколько ближе к центральному, чем при Т=290 К, что соответствует уменьшению длины волны X с повышением температуры [см. формулу (7)].

Рис. 7. Дифракция при рассеянии нейтронов на монокристалле NaCl.

При этом постепенно, по истечении нек-рого времени, возникала обычная картина дифракции. Это означало, что каждый из электронов подчиняется всем законам волновой оптики, а дифракционный эффект обязан взаимодействию волны де Бройля каждого электрона со всем объёмом кристалла. Начальная волна wo [см. формулу (2)], описывающая движение начального электрона, при прохождении через кристалл превращается в рассеянную волну ф.

Образование дифракционной картины при рассеянии частиц интерпретируется в квантовой механике след, образом. Прошедший через кристалл электрон в результате взаимодействия с кристаллич. решёткой образца отклоняется от своего первоначального движения и попадает в некоторую точку фотопластинки, установленной за кристаллом для регистрации электронов. Войдя в фотографич. эмульсию, электрон проявляет себя как частица и вызывает фотохимич. реакцию. На первый взгляд попадание электрона в ту или иную точку пластинки носит совершенно произвольный характер. Но при длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл.

Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется волновой функцией электрона w, точнее квадратом её модуля (т. к. w - комплексная функция) |w|2. Однако, поскольку вероятность при больших числах испытаний реализуется как достоверность, при многократном прохождении электрона через кристалл или, как это имеет место в реальных дифракционных экспериментах, при прохождении через образец пучка электронов, содержащего громадное кол-во частиц, величина |w|2 определяет уже распределение интенсивности в дифрагированных пучках. Т. о., результирующая волновая функция электрона ф, к-рую можно рассчитать, зная ф0 и потенциальную энергию взаимодействия электрона с кристаллом, даёт полное описание дифракц. опыта в статистическом смысле.

Специфика дифракции различных частиц. Атомная амплитуда рассеяния. Вследствие общности геометрич. принципов дифракции теория Д. ч. многое заимствовала из развитой ранее теории дифракции рентгеновских лучей. Однако взаимодействие разного рода частиц -электронов, нейтронов, атомов и т. п. -с веществом имеет различную физич. природу. Поэтому при рассмотрении Д. ч. на кристаллах, жидкостях и т. д. существенно знать, как рассеивает различные частицы изолированный атом вещества. Именно в рассеянии частиц отдельными атомами проявляется специфика дифракции различных частиц. Напр., рассеяние электронов определяется взаимодействием его электрич. заряда с электро-статич. потенциалом атома ф (r) (r - расстояние от атома), к-рый складывается из потенциала положительно заряженного ядра и потенциала электронной оболочки атома; потенциальная энергия этого взаимодействия U = еa(r). Рассеяние нейтронов определяется потенциалом их сильного взаимодействия с атомным ядром, а также взаимодействием магнитного момента нейтрона с магнитным моментом атома (магнитное рассеяние нейтронов; см. Нейтронография).

Количественно рассеивающую способность атома характеризуют величиной, к-рая наз. атомной амплитудой рассеяния f(O), где в - угол рассеяния, и определяется потенциальной энергией взаимодействия частиц данного сорта с атомами рассеивающего вещества. Интенсивность рассеяния частиц пропорциональна f2 (O).

Если атомная амплитуда известна, то, зная взаимное расположение рассеивающих центров - атомов вещества в образце (т. е. зная структуру рассеивающего образца), можно рассчитать общую картину дифракции (к-рая образуется в результате интерференции вторичных волн, исходящих из рассеивающих центров).

Теоретич. расчёт, подтверждённый экспериментальными измерениями, показывает, что атомная амплитуда рассеяния электронов fэ максимальна при O =0 и спадает с увеличением O. Величина fэзависит также от заряда ядра (атомного номepa) Z и от строения электронных оболочек атома, в среднем возрастая с увеличением Z приблизительно как Z 1/3 для малых О и как Z 2/3 при больших значениях в, но обнаруживая колебания, связанные с периодич. характером заполнения электронных оболочек.

Атомная амплитуда рассеяния нейтронов fндля тепловых нейтронов (нейтронов с энергией в сотые доли эв) не зависит от угла рассеяния, т. е. рассеяние таких нейтронов ядром одинаково во всех направлениях (сферически симметрично). Это объясняется тем, что атомное ядро с радиусом порядка 10-13 см является "точкой" для тепловых нейтронов, длина волны к-рых составляет 10-8 см. Кроме того, для рассеяния нейтронов нет явной зависимости от заряда ядра Z. Вследствие наличия у нек-рых ядер т. н. резонансных уровней с энергией, близкой к энергии тепловых нейтронов, fн для таких ядер отрицательны.

Атом рассеивает электроны значительно сильнее, чем рентгеновские лучи и нейтроны: абсолютные значения амплитуды рассеяния электронов fэ - это величины порядка 10-8см, рентгеновских лучей -fp~l0-11 см, нейтронов - fн ~ 10-12см. Т. к. интенсивность рассеяния пропорциональна квадрату амплитуды рассеяния, электроны взаимодействуют с веществом (рассеиваются) примерно в миллион раз сильнее, чем рентгеновские лучи (и тем более нейтроны). Поэтому образцами для наблюдения дифракции электронов обычно служат тонкие плёнки толщиной 10-6 - 10-5см, тогда как для наблюдения дифракции рентгеновских лучей и нейтронов нужно иметь образцы толщиной в несколько мм.

Дифракцию на любой системе атомов (молекуле, кристалле и т. п.) можно рассчитать, зная координаты их центров fiи атомные амплитуды fi для данного сорта частиц.

Наиболее ярко эффекты Д. ч. выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристалле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла в в формуле (6) уменьшается. При Д. ч. жидкостями, аморфными телами или молекулами газов, упорядоченность к-рых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

Д. ч., сыгравшая в своё время столь большую роль в установлении двойственной природы материи - корпускулярно-волнового дуализма (и тем самым послужившая экспериментальным обоснованием квантовой механики), давно уже стала одним из главных рабочих методов для изучения строения вещества. На Д. ч. основаны два важных совр. метода анализа атомной структуры вещества -электронография и нейтронография.

Лит.: Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963, гл. 1, §7, 8; Пинскер 3. Г., Дифракция электронов, М.- Л., 1949; Вайнштейн Б.К., Структурная электронография, М., 1956; Бэкон Д ж., Дифракция нейтронов, пер. с англ., М., 1957; Рамзе и Н., Молекулярные пучки, пер. с англ., М., 1960. Б. К. Вайнштейн.




Смотреть больше слов в «Большой советской энциклопедии»

ДИФРАКЦИЯ ЭЛЕКТРОНОВ →← ДИФРАКЦИЯ СВЕТА

Смотреть что такое ДИФРАКЦИЯ ЧАСТИЦ в других словарях:

ДИФРАКЦИЯ ЧАСТИЦ

        рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка част... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

- упругое когерентное рассеяние микрочастиц объектами (т. е. рассеяние, происходящее без изменения рассеивающего объекта), при к-ром из нач. пучка... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

ДИФРАКЦИЯ ЧАСТИЦ, рассеяние потока микрочастиц (электронов, нейтронов, атомов, молекул и др.) кристаллами или молекулами жидкостей и газов с образованием чередующихся максимумов и минимумов в интенсивности рассеянного пучка. Дифракция частиц аналогична дифракции света и является проявлением корпускулярно-волнового дуализма частиц; наблюдается для частиц, длина волны де Бройля которых порядка расстояния между рассеивающими центрами. Дифракционная картина зависит от внутреннего строения рассеивающего объекта. На дифракции частиц основаны электронография и нейтронография.<br><br><br>... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

ДИФРАКЦИЯ ЧАСТИЦ - рассеяние потока микрочастиц (электронов, нейтронов, атомов, молекул и др.) кристаллами или молекулами жидкостей и газов с образованием чередующихся максимумов и минимумов в интенсивности рассеянного пучка. Дифракция частиц аналогична дифракции света и является проявлением корпускулярно-волнового дуализма частиц; наблюдается для частиц, длина волны де Бройля которых порядка расстояния между рассеивающими центрами. Дифракционная картина зависит от внутреннего строения рассеивающего объекта. На дифракции частиц основаны электронография и нейтронография.<br>... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

ДИФРАКЦИЯ ЧАСТИЦ , рассеяние потока микрочастиц (электронов, нейтронов, атомов, молекул и др.) кристаллами или молекулами жидкостей и газов с образованием чередующихся максимумов и минимумов в интенсивности рассеянного пучка. Дифракция частиц аналогична дифракции света и является проявлением корпускулярно-волнового дуализма частиц; наблюдается для частиц, длина волны де Бройля которых порядка расстояния между рассеивающими центрами. Дифракционная картина зависит от внутреннего строения рассеивающего объекта. На дифракции частиц основаны электронография и нейтронография.... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

ДИФРАКЦИЯ ЧАСТИЦ, рассеяние потока микрочастиц (электронов, нейтронов, атомов, молекул и др.) кристаллами или молекулами жидкостей и газов с образованием чередующихся максимумов и минимумов в интенсивности рассеянного пучка. Дифракция частиц аналогична дифракции света и является проявлением корпускулярно-волнового дуализма частиц; наблюдается для частиц, длина волны де Бройля которых порядка расстояния между рассеивающими центрами. Дифракционная картина зависит от внутреннего строения рассеивающего объекта. На дифракции частиц основаны электронография и нейтронография.... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

рассеяние потока микрочастиц (электронов, нейтронов, атомов, молекул и др.) кристаллами или молекулами жидкостей и газов с образованием чередующихся ма... смотреть

ДИФРАКЦИЯ ЧАСТИЦ

diffrazione di radiazioni corpuscolari

ДИФРАКЦИЯ ЧАСТИЦ

дифра́кція части́нок

T: 226