ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ОТКЛОНЯЮЩИМСЯАРГУМЕНТОМ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ, уравнения, связывающие аргумент, а также искомую функцию и её производные, взятые, вообще говоря, при различных значениях этого аргумента (в отличие от обычных дифференциальных уравнений). Примерами могут служить ур-ния

где постоянные а, т, k заданы; t = t -- (t - t) в ур-нии (1) и t - kt в ур-нии (2) - отклонения аргумента. Такие ур-ния появились в кон. 18 в. Неоднократно рассматривались сами по себе и в связи с решением геом. задач, а позднее -в связи с различными приложениями, прежде всего к теории регулирования. Построение систематич. теории Д. у. с о. а. было начато в 50-х гг. 20 в., а уже с 60-х гг. эта теория представляет собой значительный отдел матем. анализа.

Наиболее хорошо изучены линейные однородные автономные (т. е. с постоянными коэффициентами и постоянными отклонениями аргумента) Д. у. со. а.; к таким ур-ниям относится, напр., (1). Здесь имеется достаточно полная система решений вида х = еpt, причём для отыскания р получается трансцендентное характеристическое ур-ние вида Р(р) = 0, где Р(р) - сумма членов вида Aрт е, m>0- целое [напр., для (1) имеем Р(р) = р - aе-tр]. Это ур-ние имеет, вообще говоря, бесконечное число комплексных корней. Прочие решения рассматриваемого Д. у. с о. а. разлагаются в ряды по указанным простейшим решениям, и поэтому об основных свойствах совокупности решений, в частности об их устойчивости, можно судить по расположению нулей функции Р(р).

Важнейший и наиболее изученный класс Д. у. с о. а. образуют дифференциальные ур-ния с запаздывающим аргументом, в к-рых старшая производная от искомой функции при к.-л. значении аргумента определяется через саму эту функцию и её младшие производные, взятые при меньших либо равных значениях аргумента. Примеры: ур-ние (1) при t=>0(t- запаздывание); ур-ние (2) при k=<1 и t=>0. Эти ур-ния и их системы, если аргументом служит время, описывают процессы с последействием, скорость к-рых в любой момент определяется их состоянием не только в тот же момент (как для обычных дифференциальных ур-ний), но и в предшествующие моменты. Такая ситуация возникает, в частности, в системах автоматич. управления при наличии запаздывания в органе управления. Уравнения с запаздывающим аргументом во многом напоминают обыкновенные дифференциальные ур-ния, однако в ряде отношений отличаются от них. Напр., если решение ур-ния (1) строится при t=>t0, то в качестве начального условия х (t) должно быть задано при t0-t=<t=<t0, решение можно строить последовательно на интервалах t0=<t=<t0+t, t0 + t=<t0+2t, пользуясь на каждом шаге результатом вычислений с предыдущего шага. В линейном автономном случае к таким ур-ниям можно применять методы операционного исчисления.

Лит.: Пинни Э., Обыкновенные дифференциально-разностные уравнения, пер. с англ., М., 1961; Беллман Р., Кук К.,

Дифференциально-разностные уравнения, пер. с англ., М., 1967; Мышкис А. Д., Эльсгольц Л. Э., Состояние и проблемы теории дифференциальных уравнений с отклоняющимся аргументом, "Успехи математических наук", 1967, т. 22, в. 2 (134) (библ.): Эльсгольц Л. Э., Норкин С. Б., Введение в теорию дифференциальных уравнений с отклоняющимся аргументом, 2 изд., М., 1971. А. Д. Мышкис.




Смотреть больше слов в «Большой советской энциклопедии»

ДИФФЕРЕНЦИАЛЬНЫЙ БИНОМ →← ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

T: 105