ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ, геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и верхней атмосфере.

В каждой точке пространства геомагнитное поле характеризуется вектором напряжённости Т, величина и направление к-рого определяются 3 составляющими X, Y, Z (северной, восточной и вертикальной) в прямоугольной системе координат (рис. 1) или 3 элементами 3. м.: горизонтальной составляющей напряжённости Н, склонением магнитным D (угол между Н и плоскостью географич. меридиана) и наклонением магнитным I (угол между Т и плоскостью горизонта).

3. м. обусловлен действием постоянных источников, расположенных внутри

Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере.

Соответственно различают основное (главное, ~99%) и переменное ( ~1 % ) геомагнитные поля.

Основное (постоянное) геомагнитное поле. Для изучения пространственного распределения основного геомагнитного поля измеренные в разных местах значения Н, D, I наносят на карты (магнитные карты) и соединяют линиями точки равных значений элементов.

Рис. 2. Карта полной напряжённости геомагнитного поля (в эрстедах) для эпохи

1965 г.; чёрные кружочки - магнитные полюсы (М. П.). На карте указаны мировыемагнитные аномалии: Бразильская (Б. А.) и Восточно-Сибирская (В.-С.А.).

Такие линии называют соответственно изодинамами, изогонами, изоклинами. Линия (изоклина) I = 0, т. е. магнитный экватор, не совпадает с географич. экватором. С увеличением широты значение I возрастает до 90° в магнитных полюсах. Полная напряжённость Т (рис. 2) от экватора к полюсу растёт с 33,4 до 55,7 а/м (от 0,42 до 0,70 э). Координаты сев. магнитного полюса на 1970: долгота 101,5° з. д., широта 75,7° с. ш.; юж. магнитного полюса: долгота 140,3° в. д., широта 65,5° ю. ш. Сложную картину распределения геомагнитного поля в первом приближении можно представить полем диполя (эксцентричного, со смещением от центра Земли приблизительно на 436 км) или однородного намагниченного шара, магнитный момент к-рого направлен под углом 11,5° к оси вращения Земли. Полюсы геомагнитные (полюсы однородно намагниченного шара) и полюсы магнитные задают соответственно систему геомагнитных координат (широта геомагнитная, меридиан геомагнитный, экватор геомагнитный) и магнитных координат (широта магнитная, меридиан магнитный). Отклонения действительного распределения геомагнитного поля от дипольного (нормального) называют магнитными аномалиями. В зависимости от интенсивности и величины занимаемой площади различают мировые аномалии глубинного происхождения, напр. Восточно-Сибирскую, Бразильскую и др., а также аномалии региональные и локальные. Последние могут быть вызваны, напр., неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~0,5R3 над поверхностью Земли (R3 - радиус Земли). Осн. геомагнитное поле имеет дипольный характер до высот ~3R3.

Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариация достигают 150у в год (1у = 10-5 э). Наблюдается также систематич. дрейф магнитных аномалий к западу со скоростью ок. 0,2°в год и изменение величины и направления магнитного момента Земли со скоростью ~20у в год. Из-за вековых вариаций и недостаточной изученности геомагнитного поля на больших пространствах (океанах и полярных областях) возникает необходимость заново составлять магнитные карты. С этой целью проводятся мировые магнитные съёмки на суше, в океанах (на немагнитных судах), в воздушном пространстве (аэромагнитная съёмка) и в космич. пространстве (при помощи искусственных спутников Земли). Для измерений применяют: компас магнитный, теодолит магнитный, магнитные весы, инклинатор, магнитометр, аэромагнитометр и др. приборы. Изучение 3. м. и составление карт всех его элементов играет важную роль для морской и воздушной навигации, в геодезии, маркшейдерском деле.

Изучение геомагнитного поля прошлых эпох производится по остаточной намагниченности горных пород (см. Палеомагнетизм), а для историч. периода - по намагниченности изделий из обожжённой глины (кирпичи, керамич. посуда и т. д.). Палеомагнитные исследования показывают, что направление основного магнитного поля Земли в прошлом многократно изменялось на противоположное. Последнее такое изменение имело место ок. 0,7 млн. лет назад. Л. Д. Шевнин.

Происхождение основного геомагнитного поля. Для объяснения происхождения осн. геомагнитного поля выдвигалось много различных гипотез, в т. ч. даже гипотезы о существовании фундаментального закона природы, согласно к-рому всякое вращающееся тело обладает магнитным моментом. Делались попытки объяснить осн. геомагнитное поле присутствием ферромагнитных материалов в коре Земли или в её ядре; движением электрич. зарядов, к-рые, участвуя в суточном вращении Земли, создают электрич. ток; наличием в ядре Земли токов, вызываемых термоэлектродвижущей силой на границе ядра и мантии и т. д., и, наконец, действием т. наз. гидромагнитного динамо в жидком металлич. ядре Земли. Современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в электропроводящем жидком ядре Земли могут происходить достаточно сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогично тому, как происходит генерация тока и магнитного поля в динамомашине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, к-рая в своём движении пересекает силовые линии магнитного поля.

Исследования ГД опираются на магнитную гидродинамику. Если считать скорость движения вещества в жидком ядре Земли заданной, то можно доказать принципиальную возможность генерации магнитного поля при движениях различного вида, как стационарных, так и нестационарных, регулярных и турбулентных. Усреднённое магнитное поле в ядре можно представить в виде суммы двух составляющих - тороидального поля Bф и поля Вр, силовые линии к-рого лежат в меридиональных плоскостях (рис. 3). Силовые линии тороидального магнитного поля Вф замыкаются внутри земного ядра и не выходят наружу.

Согласно наиболее распространённой схеме земного ГД, поле Вф в сотни раз сильнее, чем проникающее из ядра наружу поле Вр, имеющее преимущественно дипольный вид. Неоднородное вращение электропроводящей жидкости в ядре Земли деформирует силовые линии поля Вр и образует из них силовые линии поля Вф. В свою очередь, поле Вр генерируется благодаря индукционному взаимодействию движущейся сложным образом проводящей жидкости с полем Вф. Для обеспечения генерации поля Вриз Вф движения жидкости не должны быть осесимметричными. В остальном, как показывает кинетическая теория ГД, движения могут быть весьма разнообразными. Движения проводящей жидкости создают в процессе генерации, кроме поля Вр также др. медленно изменяющиеся поля, к-рые, проникая из ядра наружу, вызывают вековые вариации основного геомагнитного поля.

Общая теория ГД, исследующая и генерацию поля, и "двигатель" земного ГД, т. е. происхождение движений, находится ещё в начальной стадии развития, и в ней ещё многое гипотетично. В качестве причин, вызывающих движения, выдвигаются архимедовы силы, обусловленные небольшими неоднородностями плотности в ядре, и Силы инерции.

Рис. 3. Схема магнитных полей в гидромагнитном динамо Земли: NS - ось вращения Земли: Вр- поле, близкое к полю диполя, направленного вдоль оси вращения Земли; Bф - тороидальное поле (порядка сотен гаусс), замыкающееся внутри земного ядра.

Первые могут быть связаны либо с выделением тепла в ядре и тепловым расширением жидкости (термическая конвекция), либо с неоднородностью состава ядра вследствие выделения примесей на его границах. Вторые могут вызываться ускорением, обусловленным прецессией земной оси. Близость геомагнитного поля к полю диполя с осью, почти параллельной оси вращения Земли, указывает на тесную связь между вращением Земли и происхождением 3. м. Вращение создаёт Кориолиса силу, к-рая может играть

существенную роль в механизме ГД Земли. Зависимость величины геомагнитного поля от интенсивности движения вещества в земном ядре сложна и изучена ещё недостаточно. Согласно палеомагнитным исследованиям, величина геомагнитного поля испытывает колебания, но в среднем, по порядку величины, она сохраняется неизменной в течение длительного времени - порядка сотен млн. лет.

Функционирование ГД Земли связано со многими процессами в ядре и в мантии Земли, поэтому изучение основного геомагнитного поля и земного ГД является существенной частью всего комплекса геофизич. исследований внутреннего строения и развития Земли.

С. И. Брагинский.

Переменное геомагнитное поле. Измерения, выполненные на спутниках и ракетах, показали, что взаимодействие плазмы солнечного ветра с геомагнитным полем ведёт к нарушению дипольной структуры поля с расстояния ~3R3 от центра Земли. Солнечный ветер локализует геомагнитное поле в ограниченном объёме околоземного пространства - магнитосфере Земли, при этом на границе магнитосферы динамич. давление солнечного ветра уравновешивается давлением магнитного поля Земли. Солнечный ветер сжимает земное магнитное поле с дневной стороны и уносит геомагнитные силовые линии полярных областей на ночную сторону, образуя вблизи плоскости эклиптики магнитный хвост Земли протяжённостью не менее 5 млн. км (см. рис. в статьях Земля и Магнитосфера Земли). Приблизительно дипольная область поля с замкнутыми силовыми линиями (внутренняя магнитосфера) является магнитной ловушкой заряженных частиц околоземной плазмы (см. Радиационные пояса Земли).

Обтекание магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыв частиц в магнитосферу приводят к изменению интенсивности систем электрич. токов в магнитосфере и ионосфере Земли. Токовые системы в свою очередь вызывают в околоземном космич. пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10-5 до 102 гц) и амплитуд (от 10-3 до 10-7 э). Фотографич. регистрация непрерывных изменений геомагнитного поля осуществляется в магнитных обсерваториях при помощи магнитографов.

Рис. 4. Магнитограмма, на к-рой зафиксирована малая магнитная буря: Н0, D0, Z0 - начало отсчёта соответствующей составляющей земного магнетизма; стрелками показано

направление отсчёта.

В спокойное время в низких и средних широтах наблюдаются периодич. солнечно-суточные и лунно-суточные вариации магнитные с амплитудами 30-70у и 1-5у соответственно. Другие наблюдаемые неправильные колебания поля различной формы и амплитуды называют магнитными возмущениями, среди к-рых выделяют неск. типов магнитных вариаций.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного (рис. 4) до неск. дней, называются мировыми магнитными бурями, во время к-рых амплитуда отдельных составляющих может превзойти 1000у. Магнитная буря - одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

Практические применения явлений 3. м. Под действием геомагнитного поля магнитная стрелка располагается в плоскости магнитного меридиана. Это явление с древнейших времён используется для ориентирования на местности, прокладывания курса судов в открытом море, в геодезич. и маркшейдерской практике, в военном деле и т. д. (см. Компас, Буссоль).

Исследование локальных магнитных аномалий позволяет обнаружить полезные ископаемые, в первую очередь железную руду (см. Магнитная разведка), а в комплексе с др. геофизич. методами разведки - определить место их залегания и запасы. Широкое распространение получил магнитотеллурич. способ зондирования недр Земли, в к-ром по полю магнитной бури вычисляют электропроводность внутренних слоев Земли и оценивают затем существующие там давление и темп-ру.

Одним из источников сведений о верхних слоях атмосферы служат геомагнитные вариации. Магнитные возмущения, связанные, напр., с магнитной бурей, наступают на неск. часов раньше, чем под её воздействием происходят изменения в ионосфере, нарушающие радиосвязь. Это позволяет делать магнитные прогнозы, необходимые для обеспечения бесперебойной радиосвязи (прогнозы "радиопогоды"). Геомагнитные данные служат также для прогноза радиационной обстановки в околоземном пространстве при космич. полётах.

Постоянство геомагнитного поля до высот в неск. радиусов Земли используется для ориентации и манёвра космич. аппаратов.

Геомагнитное поле воздействует на живые организмы, растительный мир и человека. Напр., в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, ухудшается состояние больных, страдающих гипертонией, и т. д. Изучение характера электромагнитного воздействия на живые организмы представляет собой одно из новых и перспективных направлений биологии.

А. Д. Шевнин.

Лит.: Яновский Б. М., Земной магнетизм, т. 1 - 2, Л., 1963-64; его же, Развитие работ по геомагнетизму в СССР за годы Советской власти. "Изв. АН СССР, Физика Земли", 1967, № 11, с. 54; Справочник по переменному магнитному полю СССР, Л., 1954; Околоземное космическое пространство. Справочные данные, пер. с англ., М., 1966; Настоящее и прошлое магнитного поля Земли, М., 1965; Брагинский С. И., Об основах теории гидромагнитного динамо Земли, "Геомагнетизм и аэрономия",1967, т.7, № 3, с. 401; Солнечно-земная физика, М., 1968.




Смотреть больше слов в «Большой советской энциклопедии»

ЗЕМНОЙ СФЕРОИД →← ЗЕМНОЕ ИЗЛУЧЕНИЕ

Смотреть что такое ЗЕМНОЙ МАГНЕТИЗМ в других словарях:

ЗЕМНОЙ МАГНЕТИЗМ

Астрономические задачи движения небесных тел в пространстве сравнительно легко решаются, главным образом потому, что тела эти друг от друга очень отдал... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

        геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменен... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

Земной магнетизм — Астрономические задачи движения небесных тел в пространстве сравнительно легко решаются, главным образом потому, что тела эти друг от друга очень отдалены и подобны атомам, плавающим в громадной вселенной. Иначе обстоит дело с многими физическими задачами, при которых тела значительного объема в малом расстоянии действуют друг на друга, чем законы взаимодействия весьма усложняются. Небесные тела движутся по строгим, беспрерывным простым законам, метеорологические же и магнитные явления гораздо более сложны: их ход состоит обыкновенно из одной строго законной и одной случайной части, так как он зависит от многих различных причин (см. Магнетизм). Земля есть как бы громадный магнит; в сев. полушарии преобладает южн. магнетизм [Конец магнитной стрелки, которым она поворачивается к северу, называется северным. Тем же концом стрелка поворачивается к южному концу всякого магнита, поэтому северному полушарию земли приписывается южный магнетизм.], а в южном — северный; около экватора магнетизм слабее, чем на север и юг от него. Магнитная стрелка, подвешенная в центре тяжести и могущая свободно вращаться вокруг него, получает под влиянием земного магнетизма определенное направление, изменяющееся по известному закону от места до места на поверхности земли. Магнитная сила земли сравнительно мала; напр. в СПб. она приблизительно только 1/2000 силы притяжения Земли (тяготения). Направление и сила З. магнетизма определяется с помощью трех элементов: склонения, наклонения и напряжения. Склонение δ есть угол между северною половиною стрелки компаса и астрономическим меридианом (его считают от 0° до 180° от севера к востоку отрицательным и от севера к западу — положительным), а наклонение <i> i</i> — угол между горизонтом и направлением магнитной силы (напряжения) Земли; склонение и наклонение определяюсь направление всего напряжения <i>J, </i> а одно склонение — направление горизонтальной части (горизонтальной слагающей) τ всего напряжения. Склонение измеряется с помощью компаса или теодолита, стрелка которых вращается свободно в горизонте, а наклонение — посредством инклинатора, стрелка которого вращается в вертикальной плоскости, и, наконец, горизонтальная сила τ, из которой можно вычислить полную силу <i>J,</i> — посредством прибора отклонения и колебания. Что касается вопроса, где находятся магнитные массы, которые производят явления З. магнетизма, то сначала ученые (напр. Эйлер, Ганстин, около конца XVIII ст.) старались найти простые формулы для точного вычисления трех магнитных элементов — склонения, наклонения и напряжения, предполагая, что все магнитные силы земли соединены только в малом числе точек (так назыв. полюсах). Но эти попытки не привели к желанному результату, т. е. величины элементов, вычисленных из формул, далеко расходились с наблюденными величинами магнитных элементов Земли. После того, в конце 30-х гг. нынешнего столетия, занимался этой весьма трудной задачей знаменитый математик Гаусс и получил математические выражения, с помощью которых можно было вычислить на основании наблюдений, сделанных на известном числе мест земной поверхности, все элементы З. магнетизма для всего земного шара гораздо точнее, чем по вычислениям прежних ученых (напр. Ганстина). Однако не следует думать, что Гаусс, выражая с точностью до нескольких градусов результаты всех наблюдений посредством своих формул, дал этою теориею верное представление о местах, из которых исходят магнитные силы, и о ее сущности. Из его исследований мы только с достоверностью узнаем, что З. магнетизм либо совсем, либо большей частью находится под поверхностью Земли. Теория Гаусса, к сожалению, теперь мало применима, ибо лишь малое число ее коэффициентов определено, и мы поэтому не имеем составленных по ней точных магнитных карт земного шара. Существующие магнитные карты основаны большею частью непосредственно на многочисленных наблюдениях, о которых впоследствии будет сказано подробнее. Магнитные элементы — склонение δ, наклонение <i> i</i> и все напряжение <i>J</i> — подвергаются разным периодическим и непериодическим переменам: вековым, суточным и пр., и, наконец, магнитным бурям. Вековыми изменениями называются систематические перемены магнитных элементов из года в год, из века в век, достигающие значительных размеров. Так, напр., в Париже наблюдалось склонение уже в течение 350 л., так что там северный конец стрелки переходил от восточного наибольшего δ = - 9,°5 (в 1580 г.) до западного maximum‘ а = +22°,3 (в 1810 г.), следовательно, 31°,8 в 230 лет. В промежутке между 1858-90 гг. годовая перемена Δδ склонения, напр. в Англии = — 9‘, в Германии — 7‘ и в Москве — 5‘, т. е. северный полюс стрелки отходит ежегодно относительно на 9 ‘, 7‘ и 5‘ на восток. В других областях земной поверхности величины Δδ — другие и заключаются для нашего века почти везде между 0‘ и ±10‘. Вековые изменения магнитного наклонения заключаются в наше время почти все между 0‘ и ± 6‘ в год; и, наконец, годовые изменения всего и горизонтального напряжения между 0,0000 и ±0,0030 в абсолютной мере Гауссовых единиц. Вековые изменения магнитных элементов для большей части земного шара определены из наблюдений разных эпох с удовлетворительной точностью только в нашем веке; прежние же (до 1800 г.) наблюдения были слишком неточны, и число их незначительно. Теорию и объяснение вековых изменений магнитных элементов до сих пор не удалось найти; быть может, что в них играют важную роль небольшие перемены в температуре земной коры, представляющей как бы сложный магнит, подобно тому как изменяется с температурою сила стальных магнитов, которые служат для наших наблюдений. После вековых изменений магнитных элементов самые значительные перемены суть дневные, периоды которых — сутки или солнечный день. Они вообще летом больше, чем зимой, и больше около полюсов Земли, чем около экватора. На сев. полушарии сев. конец компасной стрелки около 8 ч. утра (местного времени) представляет наибольшее отклонение на В. от сев. части астрономического меридиана, а на южн. полушарии — на З.; около 2 ч. пополудни сев. конец стрелки отклоняется наиболее от астрономического меридиана на З. на сев. полушарии и на В. на южн. полушарии. Средняя суточная амплитуда изменений склонения в полярной зоне достигает 1/2 градуса, в умеренной зоне (летом) 1/5 град. и под тропиками 1/2 0 град. Дневное среднее склонение бывает утром между 10-11 ч. и вечером около 7 ч. Суточная амплитуда склонения имеет еще период 10-11 лет; она немножко больше во время maximum‘a солнечных пятен, чем во время их minimum‘a. Магнитное наклонение достигает наибольшей своей величины около 10 ч. утра; оно уменьшается мало-помалу до 10 ч. вечера и потом опять увеличивается постепенно ночью и быстрее с 5 ч. у. до 10 ч. у., до maximum‘a. Средняя величина наклонения бывает в суточном периоде в 7 ч. и 8 ч. утра и 3 1/2 ч. пополудни. При этом надо заметить, что движение сев. конца стрелки в двух полушариях противоположно, так как maximum сев. наклонения почти совпадает по времени с maximum‘ ом южн. наклонения, т. е. сев. конец стрелки на сев. магнитном полушарии идет вниз, между тем как тот же самый конец в южн. магнитном полушарии подвигается вверх; сходство, только в противоположном смысле, заключается в времени наступления дневного minimum‘a. Что касается суточного хода всего напряжения З. магнетизма, то оно достигает во многих местах maxunum‘a около 5 ч. вечера и minimum‘a ок. 10 ч. утра. Дневное движение магнитной стрелки зависит, без сомнения, преимущественно от солнца, которое частью непосредственно, как магнитное тело, частью посредственно, через свою теплоту, действует на поверхность земли, следовательно, и на магнитную стрелку, находящуюся на этой поверхности. Величина движения стрелки изменяется ежедневно, как и температура воздуха. Непременно существует связь между магнитными и метеорологическими явлениями, и магнитные элементы имеют характер, сходный с метеорологическими явлениями, т. е. их ход состоит из строго законной части и из случайной. Главное движение стрелки происходит в то время, когда солнце над горизонтом, а ночью ее движение незначительно. Случайный характер обнаруживается особенно при так называемых бурях или возмущениях (см. Бури). Часто эти бури распространены одновременно на громадном пространстве земной поверхности, иногда же бывают только местными; около магнитных полюсов Земли они случаются чаще и бывают сильнее, чем около экватора. Эти возмущения имеют свой дневной период: каждому времени дня присущи свои особенные возмущения, проявляющиеся обыкновенно в виде увеличения дневного движения. Так, наприм., если стрелка находится в западном движении, то она получает побуждение сильнее двигаться к З., а когда она движется к В., то получает стремление к усиленному движению в этом направлении. Магнитные бури распространяются на большую часть поверхности Земли мгновенно и замечаются везде почти одновременно, но проявляются в разных местах неодинаково и не имеют одинакового хода. Они усиливаются от экватора к полюсам Земли; в экваториальной же зоне бывают только незначительные возмущения. При больших возмущениях происходит собственно только колебание склонения около его среднего значения, а самое склонение остается при этом почти без перемены. Иное происходит во время бурь с другими магнитными элементами: каждое большое возмущение производит уменьшение горизонтального напряжения и увеличение склонения, так что среднее значение его обыкновенно возвращается только через несколько дней; большое возмущение часто повторяется и на следующие дни, но наступает все раньше и раньше и теряет мало-помалу свою силу. Кроме солнца, никакое другое небесное тело не имеет значительного влияния на магнитные явления на поверхности Земли. Начало сведений о магнетизме и в частности о З. магнетизме, неизвестно. По китайским историческим источникам II века до Р. Х. можно заключить, что китайцы знали уже за 1100 лет до нашей эры компас, состоявший из легкой магнитной стрелки, державшейся на пробке на воде; после того они стали подвешивать стрелку на шелковой нити, и в XII веке по Р. Х. европейцы получили компас, вероятно, от китайцев, через посредство арабов или крестоносцев. Европейским народам до XII века по Р. Х. не было известно, что подвешенный магнит принимает определенное направление; но около 1200 по Р. Х. компас в Европе уже был в употреблении при мореплавании, следовательно, знаменитый путешественник Марко Поло едва ли вывез его в Европу, потому что его путешествие совершилось позже, именно между 1271-1295 годами. Магнитное склонение европейцы начали определять довольно рано, хотя только приблизительно по полярной звезде, наприм. Колумб в Атлантическом океане в 1492 г. Инструменты для наблюдения склонения изобретены раньше, чем инструменты для определения наклонения и напряжения, ибо исследование склонения менее затруднительно, чем двух других элементов, и склонение оказалось очень важным для разных практических целей, как то — для мореплавания, съемок, рудничных работ и т. п. Наклонение первый открыл Г. Гартман (Gr. Hartmann) в 1535 году, а первый прибор для измерения наклонения устроил Норман (Norman) в 1576 году — прибор, который и теперь в употреблении. Третий элемент — магнитную силу Земли — стали определять позже других двух; только в 1785 году, во время экспедиции Лаперуза, Ламаноном (Lamanon) установлен факт, что напряжение переменяется от места до места. Карты склонения впервые составлены Галлеем (Edmund Halley) в 1683 г.; он соединял линиями точки равных склонений и, таким образом, первый предложил графический способ изогон, примененный впоследствии и к обозначению распределения температуры, давления воздуха и т. п. Для проверки карты Галлее английское правительство дало ему средства на три поездки, 1698-1702, в Атлантический океан южн. полушария, в котором он достиг 52° южн. широты. Вековые изменения склонения и наклонения были замечены уже в XVI веке и точнее узнаны в XVII столетии. Так, наприм., Бонд (Bond) определил вековые изменения наклонения в Лондоне и вычислил в 1668 г. таблицу для наклонения будущих десятилетий. Суточное движение стрелки замечено было только в 1683 г. Ташардом (Tachard) в Сиаме и в 1722 году Грагамом (Graham) в Англии. Около 1749 года Цельсий и Гюртер (Celsius, Hiorter) в Упсале сделал подробные исследования над дневным ходом стрелки склонения и подметили связь между северным сиянием и неправильным движением стрелки. Итак, до наступления нынешнего столетия были уже известны: магнитное склонение, а также его вековые изменения, дневные правильные и неправильные колебания, и сделано значительное число наблюдений наклонения. Успехи науки о З. магнетизме в XIX-м столетии очень велики: возросло значительно не только число обсерваторий и наблюдателей элементов З. магнетизма и число ученых экспедиций для этой цели, но и самые методы наблюдений и инструменты в нынешнем столетии достигли большого совершенства. Из ученых, трудившихся по этому предмету в текущем столетии, в особенности выдаются: А. Гумбольдт (Alexander v. Humboldt, Berlin, Paris), сделавший магнитные наблюдения 1799-1829 г. в экваториальной Америке, Европе и Западной Сибири; Ганстин (Hansteen), автор многих сочинений о З. магнетизме, напр. сочинения "Untersuchung über den Magnetismus der Erde" (Христиания, 1819, с атласом); сделал много магнит. наблюдений, напр. в Сибири, в 1828-1829 гг. Гаусс (Gauss, Göttingen), великий математик и астроном, споспешествовал изучению З. магнетизма изобретением точных инструментов для наблюдения перемены склонения и напряжения (магнитометры), установлением точного метода для абсолютного (т. е. независимого от качества магнитных стрелок) определения магнитной силы Земли (1832); при помощи своей теории З. магнетизма (1838) Гаусс на основании наблюдений, сделанных в ограниченном числе мест, вычислил магнитные элементы для всей поверхности Земли и составил по этим данным атлас земного магнетизма ("Atlas des Erdmagnetismus, von Gauss und Weber", 1840). Ламонт (Lamont) изобрел хорошие инструменты для абсолютных определений магнитных элементов, особенно в путешествиях — магнитный теодолит, индукционный прибор для измерения наклонения и пр., сделал сам много наблюдений в Европе и написал, между прочим, два прекрасных сочинения, "Handbuch des Erdmagnetismus" (1849) и "Handbuch des Magnetismus" (1867), которые имели большое влияние на развитие науки. Эрман известен своими многочисленными магнитными наблюдениями, сделанными во время кругосветного путешествия в 1828-1830 гг. ("Reise um die Erde durch Nord-Asien und die beiden Oceane in den Jahren 1828-1830", ausgeführt von Adolph Erman). Сэбайн (Edward Sabine) оказал услуги науке З. магнетизма наблюдениями в путешествиях в 1822, 1823 и 1827 годов и своими магнитными картами всей земной поверхности, основанными на всех наблюдениях, сделанных между 1820-1871 годами ("Contributions to Terrestrial Magnetism 1868-1872"). Крейль сделал в Австрии много магнитных наблюдений в 1843-1848 гг. Неимайер сделал много магнит наблюдений в Австралии и составил карты З. магнетизма за 1885 год ("Bergbau‘s Physikalischer Atlas", ч. IV). Из русских ученых работами по З. магнетизму известны: Фусс, путешествие через Сибирь и Монголию в Пекин 1830-1832. Р. Ленц: путешествие в Персию 1858-1859 г., исследование магнитной аномалии около Юссарэ (в Южной Финляндии) 1860 г. и пр. Г. Фритче сделал магнитные наблюдения в 386 местах в Германии, Европейской России; Сибири и Китае, исследовал вновь магнитную аномалию около Юссарэ, открыл магнитную аномалию около Москвы, его главное сочинение по З. магнетизму: "Ueber die Bestimmung der geographischen Lange und Breite und der drei Elemente des Erdmagnetismus etc. ausgeführt in den Jahren 1867-1891". И. Н. Смирнов сделал магнитные наблюдения в 1871-1 878 гг. в 291 месте Европейской России. А. А. Тилло известен своими магнитными картами Европейской России за 1880 г. Кроме названных русских ученых, в этой области работали также: Кемц, бывший директор Главной физической обсерватории в СПб.; Ковальский, бывший директор астрономической обсерватории в Казани; Ф. Ф. Миллер; Ф. Шварц сделал наблюдения в Ташкенте и Центральной Азии; М. В. Певцов сделал наблюдения в Монголии, в Джунгарии и Вост. Туркестане и др.; мореплаватели: Крузенштерн (пут. вокруг света 1803-1806); Врангель (пут. север. Сибири 1820-1824); Коцебу (пут. 1815-181 8, 1823-1826); Литке (пут. 1826-1829); и в последнее время наблюдали в русских морях: Диков, барон Майдель, Пущин, Рыкачев, Иващинцов, Зарудные, Жданко, Вилькицкий и др. В течение 1817-1848 г. французское правительство снарядило для определения элементов З. магнетизма целый ряд научных экспедиций на больших военных судах, под начальством капитанов: Фрейсине (Freycinet, 1817-1820, Corvette Uranie); Дюперрея (Duperrey, 1822-1825, Fregatte la Coquille); Бугенвиля (Bougainville, 1824-1826, Fregatte Thetis); Д‘Юрвилля (d‘Urville 1826-1829, Fregatte Astrolabe); Блоссевиля (Blosseville, 1828); Вальяна (le Vaillant, 1836-1837 Freg. Bonite); Берарда (Bérard 1838, 1842 и 1846); Кастельно (Francis de Castelnau, Voyage dans les parties centrales de l‘Amèrique du sud 1847 -1850"). В Соединенных Штатах Северной Африки магнитная съемка сделана большею частью государственным учреждением: United States Coast and Geodetic Survey. Английское правительство снаряжало множество морских экспедиций, чтобы (в совокупности с определениями на суше) получить достаточное количество наблюдений на море для составления магнитных карт всего земного шара, что и было исполняемо генералом Сэбайном (Е. Sabine) с 1840 по 1845 г. (см. его "Contributions to Terrestrial Magnetism 1868-1872"). Главные экспедиции англичан: путешествия Росса (Sir James C. Ross) и Крозье (Captain Francis Rawdon Crozier) в антарктическую зону, в 1837-1843 годах, на судах Erebus и Terror; двух офицеров, Мура (Moore) и Клерка (Clerk), на судне Pagoda в 1845 году, и капитана Крика (Creak) на пароходе Challenger в 1873-1876 год. Наконец, следует здесь упомянуть о научной экспедиции германского судна Gazelle в 1874-1876 гг. и о наблюдениях, сделанных Rijkeworsel‘ ем на Малайских островах и в Южн. Америке в 1874-85 г. Для полноты истории изучения З. магнетизма следует сказать еще несколько слов о Геттингенском магнитном обществе, основанном знаменитым Гауссом (Gauss) в 1834 году. Главная задача, которую поставило себе это общество, — наблюдения над переменами склонения и напряжения З. магнетизма посредством гауссовых магнитометров для объяснения сущности З. магнетизма. Хотя эти наблюдения делались одновременно на 30 обсерваториях, но простой закон магнитных явлений Земли еще не открыт. Прилагаемые карты З. магнетизма I, II, III, IV, V и VI извлечены из "Berghaus‘ Pbysikal. Atlas, Erdmagnetismus" (1891) и составлены Неймайером на основании наблюдений, сделанных большей частью между 1870-1888 годами. КАРТЫ ИЗОГОНИЧЕСКИЕ, ИЗОКЛИНИЧЕСКИЕ, МАГНИТНЫЕ МЕРИДИАНЫ И ЛИНИИ ИЗОДИНАМИЧЕСКИЕ. Они представляют магнитное состояние Земли в 1885 году, и карты I, III и V построены по проекции Меркатора, а II, IV и VI — по полярной проекции. Из карт I и II, на которых начерчены линии равных склонений (изогонические), видно, что склонение в двух пунктах земной поверхности неопределенное (не существует), именно под северн. шир. 70° и долг. 96° к З. от Гринвича, и под южн. широтой 73° и долготой 147° к В. от Гринвича; что эти две точки совпадают с магнитными полюсами земли на карте IV, в которых наклонение = 90° и где, следовательно, вся сила Земли вертикальна и в горизонтальном направлении никакой магнитной силы нет, которая могла бы удержать компасную стрелку в определенном положении. На южн. и северн. астрономических полюсах склонения нет, потому что меридиан там неопределенный, но компасная стрелка все-таки имеет определенное направление, именно направление изогонической линии 0°. Между магнитными и астрономическим полюсами на северн. полушарии и между двумя этими точками на южн. полушарии встречаются склонения всякой величины от -180° до +180°; но для самой большой части земной поверхности склонение редко превосходит +20°. В наше время восточные склонения (красные линии карт I и II) занимают беcпрерывную область на В. и З. от двух нулевых линий склонения, которые соединяют северн. и южн. полюсы. Запада, склонение (синие линии карт I и II) распространено на две области: одна (главная) обнимает Атлантический океан, Африку, почти всю Европу и пр., а другая, которая поменьше, — находится в Восточн. Азии и имеет эллиптическую форму. Карты III и IV показывают наклонение для всего земного шара (синие линии). Стрелка, подвешенная в центре тяжести, принимает вертикальное положение в двух магнитных полюсах земли (сев. шир. +70°, долг. 96° к З. от Гринвича; южн. шир. 73, долг. 147° к В. от Гринвича). При приближении стрелки инклинатора от северн. полюса к экватору ее наклонение к горизонту уменьшается и северный конец стрелки поднимается вверх; вблизи самого экватора находится линия, проходящая кругом всего земного шара, которая называется магнитным экватором и на которой наклонение равняется нулю, так что стрелка инклинатора, подвижная в вертикальной плоскости, параллельна к горизонту, подобно компасной стрелке. Далее, к югу от магнитного экватора, южн. конец стрелки наклоняется под горизонт ее, следовательно, сев. конец станет выше горизонта, и, наконец, в южн. магнитном полюсе продолжение стрелки проходит через зенит, и ее южный конец обращен книзу, между тем как на северном магнитном полюсе Земли южный конец стрелки обращен кверху. Наклонениям на С. от магнитного экватора мы даем положительный знак +, а на юг — отрицательный знак (-). Касательные к красным линиям карты III дают направление компасной стрелки, т. е. магнитное склонение. По картам V и VI полное напряжение (электр. единицы: 1 цтм., 1 гр., 1 секунда, сред. солнечн. вр.) около экватора меньше, чем на сев. и юге его: в южн. Атлантическом океане мы встречаем абсолютный minimum 0,28, а в Северн. Америке область абсолютного maximum‘ а 0,70, к югу от Австралии, под южн. широтою, 50°; величина другого абсолютн. maximum‘a 0,69. При этом надо заметить, что положение этих двух maximum ‘ов полного напряжения не совпадает с местами двух магнитных полюсов, где наклонение +90°. См. также Земные токи. <i> Г</i>. <i>Фритче. </i><br><br><br>... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

(геомагнетизм), 1) магнитное поле Земли. 2) Раздел геофизики, изучающий распределение в пр-ве и изменения во времени магн. поля Земли, а также ... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ (Terrestrial magnetism) — магнитное поле вблизи земли, обнаруживаемое проще всего по его влиянию на магнитную стрелку. Направление си... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

магн. поле Земли, существование к-рого обусловлено действием пост. источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих осн. ... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

магнитное поле Земли. Слагается из двух частей: пост. и перем. поля. П о-стоянное поле обусловлено внутр. строением Земли. Оно различно в разных точках... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ, магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (~99%), а также переменных источников (электрических токов) в магнитосфере и ионосфере (~1%). Напряженность геомагнитного поля Т убывает от магнитных полюсов к магнитному экватору от 55, 7 до 33, 4 А/м. <br><br><br>... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ - магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (~99%), а также переменных источников (электрических токов) в магнитосфере и ионосфере (~1%). Напряженность геомагнитного поля Т убывает от магнитных полюсов к магнитному экватору от 55,7 до 33,4 А/м.<br>... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ , магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (~99%), а также переменных источников (электрических токов) в магнитосфере и ионосфере (~1%). Напряженность геомагнитного поля Т убывает от магнитных полюсов к магнитному экватору от 55,7 до 33,4 А/м. ... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

ЗЕМНОЙ МАГНЕТИЗМ, магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (~99%), а также переменных источников (электрических токов) в магнитосфере и ионосфере (~1%). Напряженность геомагнитного поля Т убывает от магнитных полюсов к магнитному экватору от 55,7 до 33,4 А/м.... смотреть

ЗЕМНОЙ МАГНЕТИЗМ

1. Явления, связанные с магнитным полем Земли. 2. Учение об этих явлениях. Синоним: геомагнетизм.

ЗЕМНОЙ МАГНЕТИЗМ

geomagnetism, earth magnetism, terrestrial magnetism* * *terrestrial magnetism

ЗЕМНОЙ МАГНЕТИЗМ

terrestrial magnetism, geomagnetism

ЗЕМНОЙ МАГНЕТИЗМ

magnétisme terrestre

ЗЕМНОЙ МАГНЕТИЗМ

terrestrial magnetism

ЗЕМНОЙ МАГНЕТИЗМ

земни́й магнети́зм

ЗЕМНОЙ МАГНЕТИЗМ

terrestrial magnetism

ЗЕМНОЙ МАГНЕТИЗМ

terrestrial magnetism

ЗЕМНОЙ МАГНЕТИЗМ

• zemský magnetismus

T: 211