МЕТАЛЛЫ

МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным температурным коэффициентом электропроводности , способностью хорошо отражать электромагнитные волны (блеск и непрозрачность), пластичностью. М. в твёрдом состоянии имеют кристаллич. строение. В парообразном состоянии М. одноатомны.

Перечисленные выше характерные свойства М. обусловлены их электронным строением. Атомы М. легко отдают внешние (валентные) электроны. В кристаллич. решётке М. не все электроны связаны со своими атомами. Нек-рая их часть ( ~ 1 на атом) подвижна. Эти электроны могут более или менее свободно перемещаться по М. Существование свободных электронов (электронов проводи мости) в М. объясняется зонной теорией (см. Твёрдое тело). М. можно представить себе в виде остова из положительных ионов, погружённого в "электронный газ". Последний компенсирует силы электростатич. отталкивания между положительными ионами и тем самым связывает их в твёрдое тело (металлическая связь).

Из известных (1974) 105 хим. элементов 83- М. и лишь 22 - неметаллы. Если в длинном или чполудлинном" варианте периодической системы элементов Менделеева провести прямую линию от бора до астата (табл. 1), то можно считать, что неметаллы расположены на этой линии и справа от неё, а М.-слева.

Не следует, однако, абсолютизировать ни свойства, характерные для М., ни их отличия от неметаллов. Металлич. блеск присущ только компактным металлич. образцам. Тончайшие листки Ag и Аи (толщиной 10-4 мм) просвечивают голубовато-зелёным цветом. Мельчайшие порошки М. часто имеют чёрный или черно-серый цвет. Нек-рые металлы (Zn, Sb, Bi) при комнатной темп-ре хрупки и становятся пластичными только при нагревании.

Вся совокупность перечисленных выше свойств присуща типичным М. (напр.,

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА свойства металлов

Сu, Аu, Ag, Fe) при обычных условиях (атм. давлении, комнатной темп-ре). При очень высоких давлениях (~-105-10" am) свойства М. могут существенно измениться, а неметаллы приобрести метал-лич. свойства.

Многие простые вещества по одним свойствам можно отнести к М., по др.-к неметаллам. Особенно много такого рода "нарушений" имеет место вблизи границы, проведённой в табл. 1. Так, Ge по внешнему виду-М., в хим. отношении проявляет себя скорее как М. (легче отдаёт электроны, чем принимает), а по величине и характеру электропроводности Ge - полупроводник. Сурьма Sb имеет электросопротивление слишком большое для М., однако температурный коэфф. сопротивления у Sb положительный и большой, как у М.; по способности отдавать электроны Sb также относится к М. As, 5Ьи Bi иногда наз. полу металлами. Ро по внешнему виду- М., в хим. отношении ему присущи свойства и М., и неметалла - наряду с положительной валентностью (точнее окислительным числом) проявляется и отрицательная (-2).

Металлич. сплавы по свойствам имеют много общего с М., поэтому в физической, технической и экономической литературе нередко к М. относят также и сплавы.

Историческая справка. Термин "металл" произошёл от греч. слова metallon (от metalleuo - выкапываю, добываю из земли), к-рое означало первоначально копи, рудники (в этом смысле оно встречается у Геродота, 5 в. до н. э.). То, что добывалось в рудниках, Платон называл metalleia. В древности и в ср. века считалось, что существует только 7 М.: золото, серебро, медь, олово, свинец, железо, ртуть (см. Знаки химические). По алхимич. представлениям, М. зарождались в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствовались, превращаясь в серебро и золото (см. Алхимия). Алхимики полагали, что М.- вещества сложные, состоящие из "начала металлично-сти" (ртути) и "начала горючести" (серы). В нач. 18 в. получила распространение гипотеза, согласно к-рой М. состоят из земли и "начала горючести" - флогистона. М. В. Ломоносов насчитывал 6 М. (Au, Ag, Си, Sn, Fe, Pb) и определял М. как "светлое тело, которое ковать можно". В кон. 18 в. А. Л. Лавуазье опроверг гипотезу флогистона и показал, что М.- простые вещества. В 1789 Лавуазье в руководстве по химии дал список простых веществ, в к-рый включил все известные тогда 17 М. (Sb, Ag, As, Bi, Co, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn). По мере развития методов хим. исследования число известных М. возрастало. В 1-й пол. 19 в. были открыты спутники Pt, получены путём электролиза нек-рые щелочные и щёлочноземельные М., положено начало разделению редкоземельных металлов, открыты неизвестные М. при хим. анализе минералов. В 1860-63 методом спектрального анализа были открыты Cs, Rb, Tl, In. Блестяще подтвердилось существование М., предсказанных Д. И. Менделеевым на основе его периодич. закона. Открытие радиоактивности в кон. 19 в. повлекло за собой поиски природных радиоактивных М., увенчавшиеся полным успехом. Наконец, методом ядерных превращений начиная с сер. 20 в. были искусственно получены радиоактивные М., в частности трансурановые элементы.

В конце 19 - нач. 20 вв. получила физико-хим. основу металлургия -наука о произ-ве М. из природного сырья. Тогда же началось исследование свойств М. и их сплавов в зависимости от состава и строения (см. Металловедение, Металлофизика).

Химические свойства. В соответствии с местом, занимаемым в периодич. системе элементов (табл. 1), различают М. главных и побочных подгрупп. М. главных подгрупп (подгруппы а) наз. также непереходными. Эти М. характеризуются тем, что в их атомах происходит последовательное заполнение s-и р-электронных оболочек. В атомах М. побочных подгрупп (подгруппы б), наз. переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-rpynny и две f-группы - лантаноиды и актиноиды. В подгруппы а входят 22 М.: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI а). В подгруппы б входят: 1) 33 переходных металла d-группы [Си, Ag, Au (I б); Zn, Cd, Hg (II б); Sc, Y, La, Ac (III 6); Ti, Zr, Hf\ Ku (IV 6); V, Nb, Та, элемент с Z = 105 (V 6); Cr, Mo, W (VI б); Mn, Тс, Re (VII 6); Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt (VIII 6)]; 2) 28 M. f-группы (14 лантаноидов и 14 актиноидов).

Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Напр.,СгиМо (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s‘ и 4rf55s‘, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII б) два внешних электрона "перешли" на соседний валентный подуровень, и для атома Pd наблюдается d‘° вместо ожидаемого d8s2.

М. присущи многие общие хим. свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т. д. Металлич. свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства М. тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).

В периодической системе элементов Менделеева (табл. 1) в пределах каждого периода, начиная со 2-го, с увеличением ат. н. электроотрицательность возрастает от 2 до 7, начиная со щелочного металла и кончая галогеном (переход от М. к неметаллам). В пределах подгрупп (а и б) с увеличением ат. н. электроотрицательность в общем уменьшается, хотя и не всегда последовательно. В семействах лантаноидов и актиноидов она сохраняется примерно на одном уровне.

Если расположить М. в последовательности увеличения их нормальных потенциалов, получим т. н. ряд напряжений или ряд активностей (табл. 2 и 3). Рассмотрение этого ряда показывает, что по мере приближения к его концу -от щелочных и щёлочноземельных М. к Pt и Au - электроположительный характер членов ряда уменьшается. М. от Li по Na вытесняют Н2 из Н2О на холоду, а от Mg по Т1 - при нагревании. Все М., стоящие в ряду выше H2, вытесняют его из разбавл. кислот (на холоду или при нагревании). М., стоящие ниже Н2, растворяются только в кислородных кислотах (таких, как концентрир. H2SO4 при нагревании или HNO3), a Pt, Au -только в царской водке (Ir нерастворим и в ней).

М. от Li no Na легко реагируют с О2 на холоду; последующие члены ряда соединяются с О2 только при нагревании, a Ir, Pt, Au в прямое взаимодействие с О2 не вступают.

Окислы М. от Li no A1 (табл. 2) и от La no Zn (табл. 3) трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на М. и О2 уже при слабом нагревании. О прочности соединений М. с кислородом (и др. неметаллами) можно судить и по разности их электроотрица-тельностей (табл. 1): чем она больше, тем прочнее соединение.

Табл. 2. -Нормальные электродные потенциалы непереходных металлов

Валентности (точнее, окислит, числа) непереходных М. равны: +1 для подгруппы 1а; +2 для Па; +1 и +3 для Ilia; +2 и +4 для IVа; +2, +3 и + 5 для Va; -2, +2, + 4, +6 для VI а. У переходных М. наблюдается ещё большее разнообразие окислительных чисел: + 1, +2, +3 для подгруппы I 6; +2 для II б; + 3 для III 6; +2, +3, +4 для IV б; +2, +3, +4, +5 для V 6; + 2, +3, +4, +5, +6 для VI б; +2, + 3, +4, +5, +6, +7 для VII б; от +2 до +8 в VIII б. В семействе лантаноидов наблюдаются окислительные числа +2, + 3 и +4, в семействе актиноидов -от +3 до +6. Низшие окислы М. обладают основными свойствами, высшие являются ангидридами кислот (см. Кислоты и основания). М., имеющие переменную валентность (напр., Cr, Mn, Fe), в соединениях, отвечающих низшим степеням окисления [Сr( + 2), Мn ( + 2), Fe ( + 2)], проявляют восстановительные свойства; в высших степенях окисления те же М. [Сr ( + 6), Мn ( + 7), Fe ( + 3)] обнаруживают окислительные свойства. О хим. соединениях М. друг с другом см. в ст. Металлиды, о соединениях М. с неметаллами см. в статьях Бориды, Гидриды, Карбиды, Нитриды, Окислы и др.

Лит.: Некрасов Б. В., Основы общей химии, 2 изд., т. 1 - 3, М., 1969 - 70; Дей М. К., Се лбин Дж., Теоретическая неорганическая химия, пер. с англ., 2 изд., М., 1971; Барнард А., Теоретические основы неорганической химии, пер. с англ., М., 1968; Рипан Р., Ч е тяну И., Неорганическая химия, т. 1 - 2, Химия металлов, пер. с рум., М., 1971 - 72. См. также лит. при ст. Неорганическая химия.

С. А. Погодин.

Физические свойства. Большинство М. кристаллизуется в относительно простых структурах - кубических (кубические объёмноцентрированная ОЦК и гране-центрированная ГЦК решётки) и гексагональных ПГУ, соответствующих наиболее плотной упаковке атомов. Лишь небольшое число М. имеет более сложные типы кристаллич. решёток. Многие М. в зависимости от внешних условий (темп-ры, давления) могут существовать в виде двух или более кристаллич. модификаций (см. Полиморфизм). Полиморфные превращения иногда связаны с потерей металлич. свойств, напр, превращение белого олова ((З-Sn) в серое (a-Sn).

Электрические свойства. Удельная электропроводность М. при комнатной темп-ре а~10~6-10~4 ом~1 см~1 (табл. 1), тогда как у диэлектриков, напр, у серы, a~ 10~17 ом~1см~1. Промежуточные значения а соответствуют полупроводникам. Характерным свойством М. как проводников электрич. тока является линейная зависимость между плотностью тока и напряжённостью приложенного электрич. поля (Ома закон). Носителями тока в М. являются электроны проводимости, обладающие высокой подвижностью. Согласно квантово-механич. представлениям, в идеальном кристалле электроны проводимости (при полном отсутствии тепловых колебаний кристаллической решётки) вообще не встречают сопротивления на своём пути. Существование у реальных М. электросопротивления является результатом нарушения периодичности кристаллич. решётки. Эти нарушения могут быть связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. дефектов в кристаллах. На тепловых колебаниях и дефектах (а также друг на друге) происходит рассеяние электронов. Мерой рассеяния служит длина свободного пробега - среднее расстояние между двумя последовательными столкновениями электронов. Величина удельной электропроводности а связана с длиной свободного пообега / соотношением:

где п - концентрация электронов проводимости (~1022-1023 см~3), е - заряд электрона, рр = 2лН (Зи/8я)‘/а - граничный фермиевский импульс (см. Ферми поверхность), h - Планка постоянная. Зависимость а или удельного электросопротивления р от темп-ры Т связана с зависимостью I от Т. При комнатных темп-рах в М. / ~ 10~6см.

При темп-рах, значительно превышающих Дебая температуру, сопротивление р обусловлено гл. обр. тепловыми колебаниями кристаллической решётки и возрастает с темп-рой линейно:

Р = рост(1+аГ). (2) Постоянная а наз. температурным коэффициентом электропроводности и имеет при темп-ре Т = О С типичное значение a =4-10~3 град"1. При более низких темп-рах, когда влиянием тепловых колебаний атомов на рассеяние электронов можно пренебречь, сопротивление практически перестаёт зависеть от темп-ры.

Это предельное значение сопротивления наз. остаточным. Величина рост характеризует концентрацию дефектов в решётке М. Удаётся получить столь чистые (сверхчистые) и свободные от дефектов М., что их остаточное сопротивление в 104—105 раз превышает сопротивление этих М. в обычных условиях. Длина свободного пробега электронов в сверхчистых М. l ~ 10-2 см. Теоретич. рассмотрение показывает, что при низких темп-pax формула для удельного электросопротивления имеет вид:

р = рост + AT2 + ВT5, (3)

где А и В — величины, не зависящие от Т. Член ВТ5 связан с рассеянием электронов на тепловых колебаниях атомов, а член AT2со столкновениями электронов друг с другом и даёт заметный вклад в сопротивление лишь у нек-рых М., напр, у Pt. Однако закономерность (3) выполняется лишь приближённо.

У нек-рых М. и металлидов при определённой темп-ре, наз. критической, наблюдается полное исчезновение сопротивления — переход в сверхпроводящее состояние (см. Сверхпроводимость). Критич. темп-ры чистых металлов лежат в интервале от сотых долей К до 9 К (табл. 1).

Если металлич. образец, по к-рому течёт ток, поместить в постоянное магнитное поле, то в М. возникают явления, обусловленные искривлением траекторий электронов в магнитном поле в промежутке между столкновениями (гальваномагнитные явления). Среди них важное место занимают Холла эффект и изменение электросопротивления М. в магнитном поле (магнетосопротивление). Влияние магнитного поля тем больше, чем больше длина свободного пробега l, т. е. чем ниже темп-pa и чем меньше примесей в М. При комнатной темп-ре магнитное поле 107—105 э изменяет сопротивление М. лишь на доли %. При Т =< 4 К в сверхчистых М. сопротивление может измениться во много раз. Зависимость электросопротивления М. от внешнего магнитного поля существенно зависит от характера энергетич. спектра электронов, в частности от формы поверхности Ферми. У многих металлич. монокристаллов (Au, Cu, Ag и др.) наблюдается сложная анизотропия сопротивления в магнитном поле.

В магнитных полях ~ 104—105 э и при низких темп-pax у всех металлич. монокристаллов наблюдается осциллирующая зависимость электросопротивления от магнитного поля (Шубникова — де Хааза эффект). Это явление-следствие квантования движения электронов в плоскости, перпендикулярной направлению магнитного поля. Как правило, квантовая осциллирующая зависимость в виде небольшой "ряби" наложена на обычную зависимость сопротивления от магнитного поля.

При нагревании М. до высоких темп-р наблюдается "испарение" электронов с поверхности М. (термоэлектронная эмиссия). Число электронов, вылетающих в единицу времени, определяется законом: п ~ eхр (-ф/kT), где k - Больцмана постоянная, ф - работа выхода электронов из М. (см. Ричардсона формула). Величина ф различна у разных М. и зависит также от состояния поверхности. Эмиссия электронов с поверхности М. происходит также под действием сильных электрич. полей ~ 10 в степени 7 в/см в результате туннельного просачивания электронов через сниженный полем потенциальный барьер (см. Туннельная эмиссия). В М. наблюдаются явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электрон-ной эмиссии. Перепад темп-ры вызывает в М. появление электрич. тока или разности потенциалов (см. Термоэлектрические явления).

Тепловые свойства. Теплоёмкость М. (табл.1) обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в М. очень велика (см. выше) и не зависит от темп-ры, электронная теплоёмкость мала и у большинства М. наблюдается только при темп-pax ~ неск. К. Возможность измерения Сэ связана с тем, что при уменьшении темп-ры Ср убывает пропорционально Т3, а Сэ ~ Т. Для Сu: С9 = 0,9-10-4RT, для Pd: Сэ = = 1,6*10~3КТ (R - газовая постоянная). Теплопроводность М. осуществляется гл. обр. электронами проводимости. Поэтому между удельными коэфф. электропроводности и теплопроводности существует простое соотношение, наз. Виде-мана - Франца законом.

Взаимодействие М. с электромагнитными поля-м и. Переменный электрич. ток при достаточно высокой частоте течёт по поверхности М., не проникая в его толщу (см. Скин-эффект). Электромагнитное поле частоты со проникает в М. лишь

глощается незначит. часть электромагнитной энергии. Основная часть энергии переизлучается электронами проводимости и отражается (см. Металлооп-тика). В чистых М. при низких темп-рах длина свободного пробега электронов / часто превышает глубину о. При этом напряжённость поля существенно изменяется -на длине свободного пробега, что проявляется в характере отражения электромагнитных волн от поверхности М. (аномальный скин-эф-ф е к т).

Сильное постоянное магнитное поле существенно влияет на электродина-мич. свойства М. В М., помещённых в такое поле, при условии, если частота электромагнитного поля кратна частоте прецессии электронов проводимости вокруг силовых линий постоянного магнитного поля, наблюдаются резонансные явления (см. Циклотронный резонанс). При определённых условиях в толще М., находящегося в постоянном магнитном поле, могут распространяться слабо затухающие электромагнитные волны, т. е. исчезает скин-эффект. Электроди-намич. свойства М., помещённого в магнитное поле, сходны со свойствами плазмы в магнитном поле и являются одним из основных источников информации об электронах проводимости.

Для электромагнитных волн оптич. диапазона М., как правило, практически непрозрачны и обладают характерным блеском (см. Отражение света, Зеркало). В поглощении света в видимом и ультрафиолетовом диапазонах нек-рую роль играет внутренний фотоэффект. Отражение от поверхности М. плоскополяризованного света, падающего под произвольным углом, сопровождается поворотом плоскости поляризации и появлением эллиптич. поляризации (см. Вращение плоскости поляризации). Это явление используется для определения оптич. констант М.

Общая структура характеристических рентгеновских спектров М. и диэлектриков одинакова. Тонкая же структура линий, соответствующая квантовым переходам электронов из зоны проводимости на глубокие уровни, отражает распределение электронов проводимости по уровням энергии.

Магнитные свойства. Переходные металлы с недостроенными f- и d-электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние (см. Магнетизм, Ферромагнетизм, Антиферромагнетизм, Кюри точка). Магнитное упорядочение существенно влияет на все свойства М., в частности на электрич. свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфич. черты.

Магнитные свойства остальных М. определяются электронами проводимости, к-рые вносят вклад в диамагнитную и парамагнитную восприимчивости М., и диамагнитной восприимчивостью ионного состава (см. Диамагнетизм, Парамагнетизм). Магнитная восприимчивость X большинства М. относительно мала (X ~ 10-6) и слабо зависит от темп-ры.

При низких темп-pax Г и в больших магнитных полях Н > 104 kT у всех металлич. монокристаллов наблюдается сложная осциллирующая зависимость суммарного магнитного момента от поля Н (см. Де Хааза - ван Альфена эффект), природа к-poro та же, что и у эффекта Шубникова - де Хааза. Исследование осцилляционных эффектов позволяет определить форму поверхности Ферми. М. И. Каганов.

Механические свойства. Многие М. обладают комплексом меха-нич. свойств, обеспечивающим их широкое применение в технике, в частности в качестве конструкционных материалов. Это, в первую очередь, сочетание высокой пластичности со значит, прочностью и сопротивлением деформации, причём соотношение этих свойств может регулироваться в большом диапазоне с помощью механич. и термич. обработки М., а также получением сплавов различного состава.

Исходной характеристикой механич. свойств М. является модуль упругости G, определяющий сопротивление кристал-лич. решётки упругому деформированию и непосредственно отражающий величину сил связи в кристалле. В монокристаллах эта величина, как и остальные механические характеристики, анизотропна и коррелирует с темп-рой плавления М. (напр., средний модуль сдвига G изменяется от 0,18 -10" эрг/см3 для легкоплавкого Na до 27-10" эрг/см3 для тугоплавкого Re).

Сопротивление разрушению или пла-стич. деформации идеального кристалла ~ 10~4 G. Но в реальных кристаллах эти характеристики, как и все механич. свойства, определяются наличием дефектов, в первую очередь дислокаций. Перемещение дислокаций по плот-ноупакованным плоскостям приводит к элементарному акту скольжения - основному механизму пластической деформации М. Др. механизмы (двойникование и сбросообразование) существенны только при пониженных темп-pax. Важнейшая особенность М.- малое сопротивление скольжению дислокации в бездефектном кристалле. Это сопротивление особенно мало в кристаллах с чисто металлич. связью, к-рые обычно имеют плотноупакованные структуры (гранецентрированную кубическую или гексагональную). В М. с ковалент-ной компонентой межатомной связью, имеющих объёмноцентрир. решётку, сопротивление скольжению неск. больше, однако всё же мало по сравнению с чисто ковалентными кристаллами. Сопротивление пластической деформации, по крайней мере в М. с гранецентрир. кубической и гексагональной решётками, связано с взаимодействием движущихся дислокаций с др. дефектами в кристаллах, с др. дислокациями, примесными атомами, внутренними поверхностями раздела. Взаимодействие дефектов определяется искажениями решётки вблизи них и пропорционально G. Для отожжённых монокристаллов начальное сопротивление пластич. деформации (п р е-дел текучести) обычно ~ 10~3- 10~4 G. В процессе деформации число дислокаций в кписталлич. оешётке (плот-

ине) Это наз. деформационным упрочнением или наклёпом. Для монокристаллов М. характерно наличие трёх стадий деформационного упрочнения. На 1-й стадии значит, часть дислокаций выходит на поверх-

ляции дислокации, выдавливаемых из их плоскостей скольжения. Значение этой стадии больше для М. с объёмноцентрир. решёткой.

Степень "привязанности" дислокации к плоскости скольжения определяется шириной дислокации в этой плоскости, к-рая, в свою очередь, зависит от энер-

дислокации, до 10~4 для сплавов Сu с Широкими дислокациями). Процесс разрядки дислокационной плотности ускоряется при повышении темп-ры и может привести к релаксации и значит, восстановлению свойств кристаллов. Чем выше темп-pa и меньше скорость деформирования, тем больше успевают развиться процессы релаксации и тем меньше деформационное упрочнение.

При Г > 0,5 Гпл в пластин, деформации начинают играть существенную роль точечные дефекты, в первую очередь вакансии, к-рые, оседая на дислокациях, приводят к vix выходу из плоскостей скольжения. Если этот процесс достаточно интенсивен, то деформация не сопровождается упрочнением: М. течёт с постоянной скоростью при неизменной нагрузке (ползучесть). Протекание процессов релаксации напряжений и постоянная разрядка дислокационной структуры обеспечивают высокую пластичность М. при их горячей обработке, что позволяет придавать изделиям из М. разнообразную форму. Отжиг сильно деформированных монокристаллов М. нередко приводит к образованию поликристаллов с малой плотностью дислокаций внутри зёрен (рекристаллизаци я).

Достижимые степени деформации М. ограничены процессом разрушения. По мере роста плотности дислокаций при холодной деформации растёт неравномерность их распределения, приводящая к концентрации напряжений в местах сгущения дислокаций и зарождению здесь очагов разрушения - трещин. В реальных кристаллах такие концентрации напряжений имеются и в исходном недеформированном состоянии (скопление примесей, частицы др. фаз и т. п.). Но вследствие пластичности М. деформация вблизи опасных мест снимает напряжения и предотвращает разрушение. Однако, если сопротивление движению дислокаций растёт, то релаксационная способность материала падает, что под нагрузкой приводит к развитию трещин (хрупкое разрушение). Это особенно проявляется в М. с объём -ноцентрир. решёткой, в к-рых подвижность дислокаций резко уменьшается при понижении темп-ры (из-за взаимодействия с примесями и уменьшения числа кристаллографич. возможных плоскостей скольжения). Предотвращение хладноломкости - одна из важнейших технич. проблем разработки конструкционных металлических материалов. Др. актуальная проблема - увеличение прочности и сопротивления деформации при высоких темп-pax. Зародышами разрушения в этих условиях служат микропоры, образующиеся в результате скопления вакансий. Эффективный способ повышения высокотемпературной прочности -уменьшение диффузионной подвижности точечных дефектов, в частности легированием.

Применяемые в технике конструкционные металлич. материалы являются поликристаллическими. Их механич. свойства практически изотропны и могут существенно отличаться от свойств монокристаллов М. Межфазные границы вносят дополнительный вклад в упрочнение. С др. стороны, они могут быть местами предпочтительного разрушения (межзёренное разрушение) или деформации. Изменяя число и строение межфазных границ, форму и пространственное расположение отдельных структурных составляющих многофазных систем (поликристаллов, гетерофаз-ных агрегатов, возникающих вследствие фазовых превращений, или искусственно полученных композиций), а также регулируя состав и дефектную структуру отдельных кристаллов, можно получить огромное разнообразие механич. свойств, необходимых для практич. использования металлич. материалов.

А. Л. Ройтбурд.

Лит.: Френкель Я. И., Введение в теорию металлов, 2 изд., М.- Л., 1950; Бете Г., Зоммерфельд А., Электронная теория металлов, пер. с нем., М.- Л.> 1938; Лифшиц И. М., Азбель М. Я., Каганов М. И., Электронная теория металлов, М., 1971; Абрикосов А. А., Введение в теорию нормальных металлов, М., 1972; Слэтер Дж., Диэлектрики, полупроводники, металлы, пер. с англ., М., 1969; Шульце Г., Металлофизика, пер. с нем., М., 1971.

Металлы в технике. Благодаря таким свойствам, как прочность, твёрдость, пластичность, коррозионная стойкость, жаропрочность, высокая электрич. проводимость и мн. др., М. играют грсмад-ную роль в совр. технике, причём число М., находящих применение, постоянно растёт. Характерно, что до нач. 20 в. мн. важнейшие М.- Al, V, W, Мо, Ti, U, Zr и др.- либо не производились вообще, либо выпускались в очень огра-нич. масштабах; такие М., как Be, Nb, Та, начали сравнительно широко использоваться лишь накануне 2-й мировой войны 1939-45. В 70-х гг. 20 в. в промышленности применяются практически все М., встречающиеся в природе.

Все М. и образованные из них сплавы делят на чёрные (к ним относят железо и сплавы на его основе; на их долю приходится ок. 95% производимой в мире металлопродукции) и цветные, или, точнее, нежелезные (все остальные М. и сплавы). Большое число нежелезных М. и широкий диапазон их свойств не позволяют классифицировать их по к.-л. единому признаку. В технике принята условная классификация, по к-рой эти М. разделены на неск. групп по различным признакам (физ. и хим. свойствам, характеру залегания в земной коре), специфичным для той или иной группы: лёгкие металлы (напр., Al, Mg), тяжёлые М. (Си, РЬ и др.), тугоплавкие металлы (W, Мо и др.), благородные металлы (Au, Pt и др.), рассеянные металлы (Ga, In, T1), редкоземельные М. (Sc, Y, La и лантано-иды, см. Редкоземельные элементы"), радиоактивные металлы (Ra, U и др.). М., к-рые производят и используют в огранич. масштабах, наз. редкими металлами. К ним относят все рассеянные, редкоземельные и радиоактивные М., большую часть тугоплавких и нек-рые лёгкие М.

Большая способность М. к образованию многочисл. соединений разного типа, к различным фазовым превращениям создаёт благоприятные условия для получения разнообразных сплавов, характеризующихся требуемым сочетанием полезных свойств. Число используемых в технике сплавов превысило уже 10 тыс. Значение сплавов как конструкционных материалов, электротехнических материалов, материалов с особыми физ. свойствами (см. Прецизионные сплавы) непрерывно возрастает. В то же время в связи с развитием полупроводниковой и ядерной техники расширяется произ-во




Смотреть больше слов в «Большой советской энциклопедии»

МЕТАЛОГИКА →← МЕТАЛЛУРГИЯ

Смотреть что такое МЕТАЛЛЫ в других словарях:

МЕТАЛЛЫ

I(и металлоиды)(хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резк... смотреть

МЕТАЛЛЫ

        простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным темпера... смотреть

МЕТАЛЛЫ

(от греч. metallon, первоначально — шахта, руда, копи), простые в-ва, обладающие в обычных условиях характерными св-вами: высокими электропрово... смотреть

МЕТАЛЛЫ

(от греч. metallon-первоначально, шахта, копи), в-ва, обладающие в обычных условиях характерными, металлическими, свойствами-высокими электрич. ... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫв качестве элемента мифопоэтической системы М. могут функционировать в нескольких аспектах. Иногда (обычно в более поздних традициях) они образу... смотреть

МЕТАЛЛЫ

[metals] — простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны, пластичностью. М. В. Ломоносов определял металлы как «светлые тела, которые ковать можно». Металлы в твердом состоянии имеют кристаллическую решетку. В парообразном состоянии металлы одноатомны, характерные свойства металлjd обусловлены их электронным строением. Атомы металлов легко отдают внешние (валентные) электроны. В кристаллической решетке металлов не все электроны связаны со своими атомами. Некоторая часть (~1 электрон на атом) подвижна и может более или менее свободно перемещаться. Таким образом, металлы можно представить в виде остова (каркаса) из положительн ионов, погруженного в «электронный газ». Последний компенсирует силы электростатического отталкивания между положительно заряженными ионами и тем самым связывает их в твердое тело, обеспечивая так называемую металлическую связь. Из известных 105 химических элементов 83 — металлы и лишь 22 — неметаллы. Если в Периодической системе элементов провести прямую от В до At, то можно считать, что неметаллы расположены на этой линии и справа от нее, а металлы — слева.<br>По строению электронных оболочек металлы принято разделять на непереходные (или нормальные) и переходные. Непереходные металлы характеризуются тем, что в их атомах происходит последовательное заполнение <i>s-</i> и <i>р-</i> электронных оболочек. В атомах переходных металлов происходит достраивание <i>d-</i> и <i>f</i>-оболочек. К непереходным металлам относят 22 металла, занимающих подгруппы а в Периодической системе элементов: Li, Na, К, Be, Mg, Ca, Ba, Sb, Bi и др. Переходные металлы занимают подгруппы б в Периодической системе элементов. Наиболее типичные переходные металлы: Cu, Ag, Au, Zn, V, Mb, Та, Cr, Mo, W, Fe, Ni, Co и др. К переходным металлам относят также лантаноиды (14) и актиноиды (14). Металлам присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных оксидов и гидрооксидов, замещение водорода в кислотах и т. д. <br>Большинство металлов кристаллизуются с образованием относительно простых ОЦК, ГЦК и ПГУ кристаллических решеток, соответствующих наиболее плотной упаковке атомов. Лишь немногие металлы имеют более сложные типы кристаллических решеток. Металлы в зависимости от внешних условий (температуры, давления) могут существовать в двух или более кристаллических модификациях (Смотри Полиморфизм). Полиморфные превращения иногда, например, превращение белого олова (β-Sn) в серое (α-Sn), сопровождается потерей металлических свойств. <br>В силу таких свойств, как прочность, Al, V, Mo, W, Ti, Zr и др.-до XX в. либо не велось, либо было очень ограниченно. С 1970-х гг. в промышленности применяются практически все металлы, встречающиеся в природе. <br>Все металлы и их сплавы подразделяются на черные (к ним относят железо и РЗМ)<br> — легкоплавкие металлы<br> — щелочноземельные металлы<br> — черновые металлы<br>... смотреть

МЕТАЛЛЫ

(нем. Metall; первоисточник: греч. metallon - шахта, руда, металл) - простые вещества, обладающие высокими теплопроводностью и электрич. проводимостью,... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ, химические элементы, обладающие высокой тепло- и электропроводностью, атомы которых связаны в кристаллические решетки единственным в своем род... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ (греч.) - вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 с<span>м&amp;sup3</span>) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.<br>... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ (греч .), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.<br><br><br>... смотреть

МЕТАЛЛЫ

- (греч.) - вещества, обладающие в обычных условиях высокимиэлектропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры)и теплопроводностью, ковкостью, ""металлическим"" блеском и др. свойствами,обусловленными наличием в их кристаллической решетке большого количества(1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижныхэлектронов. Металлы можно представить в виде ионного кристаллическогоостова, погруженного в электронный газ, который, компенсируяэлектростатическое отталкивание ионов, связывает их в твердое тело(металлическая связь). Металлическими свойствами обладают более 80химических элементов и множество сплавов. Химические свойства металловобусловлены слабой связью валентных электронов с ядрами атомов: они легкообразуют положительные ионы, проявляют положительную степень окисления,образуют основные оксиды и гидрооксиды, большинство металлов замещаетводород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавына его основе) и цветные (все остальные). Металлы играют огромную рольглавным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ

вещества, обладающие в обычных условиях высокими электропроводностью (10б-108См/м, уменьшается с ростом темп-ры) и теплопроводностью, ковкостью, "метал... смотреть

МЕТАЛЛЫ

, простые вещества, обладающие в обычных условиях характерными свойствами - высокой электропроводностью (106-104 Ом-1´см-1), уменьшающейся с ростом тем... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами - высокой электропроводностью (106-104 Ом-1?см-1), уменьшающейся с ростом температуры, высокой теплопроводностью, блеском, пластичностью, ковкостью и др. Свойства металлов обусловлены наличием в их кристаллической решетке "электронного газа" - большого количества подвижных, слабо связанных с атомным ядром электронов. В периодической системе из 109 элементов 85 - металлы. В технике железо и его сплавы относят к черным металлам, остальные - к цветным, металлы с плотностью менее 5000 кг/м3 называются легкими, прочие - тяжелыми. В свободном виде в природе встречаются только благородные металлы. Металлы используются главным образом как конструкционные и электротехнические материалы. <br>... смотреть

МЕТАЛЛЫ

м. мн. ч. metalli m pl ( см. тж металл) металлы переходной группы, переходные металлы — metalli di transizione {intermedi} - благородные металлы- драг... смотреть

МЕТАЛЛЫ

(или ЭЛЕМЕНТЫ) РАССЕЯННЫЕ — встречающиеся в ничтожных количествах в г. п. и рудах, образуя очень редко самостоятельные м-лы; обычно это изоморфные прим... смотреть

МЕТАЛЛЫ

Металлы – вещества, обладающие в обычных условиях электропроводностью, теплопроводностью, ковкостью, «металлическим – блеском и др. свойствами, обу... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫхимически-простые тела, отличающиеся особым специфическим блеском, непрозрачностью, способностью проводить теплоту и электричество, плавкостью и... смотреть

МЕТАЛЛЫ

Металлы ассоциируются: золото с Солнцем, серебро - с Луной, свинец - с Сатурном, олово - с Юпитером, железо - с Марсом, ртуть - с Меркурием, медь или латунь - с Венерой. Металлы неблагородные олицетворяют чувственный мир человека невозрожденного, а золото символизирует достижение просветления и духовности. В алхимии неблагородным металлом считается свинец, над которым следует работать, чтобы получить наилучший металл - золото, просветление. Металлы - это как бы зародыши в земном чреве.<br>... смотреть

МЕТАЛЛЫ

корень - МЕТАЛЛ; окончание - Ы; Основа слова: МЕТАЛЛВычисленный способ образования слова: Бессуфиксальный или другой∩ - МЕТАЛЛ; ⏰ - Ы; Слово Металлы со... смотреть

МЕТАЛЛЫ

. В свящ. Писании нередко упоминаются из металлов: <, <, <, <, цинк, <, <. см. о каждом в своем месте.

МЕТАЛЛЫ

Металлы. В ·свящ. Писании нередко упоминаются из металлов: железо, медь, олово, свинец, цинк, серебро, золото. см. о каждом в своем месте.

МЕТАЛЛЫ

METALS См. АЛЮМИНИЙ; ЗОЛОТО В СЛИТКАХ; ЗОЛОТОДОБЫЧА; ЛОМ МЕТАЛЛИЧЕСКИЙ; МЕДЬ; ОЛОВО; СЕРЕБРО; СПЛАВЫ СТАЛЬНЫЕ; СТАЛЬ; ЦИНК

МЕТАЛЛЫ БЛАГОРОДНЫЕ

— син. термина металлы драгоценные.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МЕТАЛЛЫ БЛАГОРОДНЫЕ

МЕТАЛЛЫ БЛАГОРОДНЫЕзолото, серебро и платина; не ржавъчот на воздухе.Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф.,1907.

МЕТАЛЛЫ ВТОРИЧНЫЕ

екіншілік металдар

МЕТАЛЛЫ ВТОРОГО РОДА

(химические элементы, занимающие по своим свойствам промежуточное положение между металлами и неметаллами) Halbmetalle

МЕТАЛЛЫ (ГРЕЧ .)

МЕТАЛЛЫ (греч .), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ (ГРЕЧ.)

МЕТАЛЛЫ (греч.), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ (ДОПОЛНЕНИЕ К СТАТЬЕ)

Металлы (дополнение к статье) благородные — см. Металлы и металлоиды (к упомянутым в этой ст. благородным М., известным во времена алхимиков, надо д... смотреть

МЕТАЛЛЫ (ДОПОЛНЕНИЕ К СТАТЬЕ)

благородные — см. Металлы и металлоиды (к упомянутым в этой ст. благородным М., известным во времена алхимиков, надо добавить позднее открытые платин... смотреть

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

- (см. ДРАГОЦЕННЫЕ МЕТАЛЛЫ).

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

— Au, Ag, Pt и металлы платиновой гр. — наиболее стойкие по отношению к хим. воздействиям (кроме серебра). Син.: металлы благородные.Геологический слов... смотреть

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

золото, серебро, платина и металлы платиновой группы (палладий, иридий, родий, рутений и осьмий) в любом виде и состоянии, за исключением ювелирных и других бытовых изделий из этих материалов и лома таких изделий.<br><p class="src"><em><span itemprop="source">Словарь бизнес-терминов.<span itemprop="author">Академик.ру</span>.<span itemprop="source-date">2001</span>.</span></em></p>... смотреть

МЕТАЛЛЫ И МЕТАЛЛОИДЫ

Металлы и металлоиды (хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резко отличают М. от других химических элементов. В физическом отношении это по большей части тела твердые при обыкновенной температуре, непрозрачные (в толстом слое), обладающие известным блеском, ковкие, тягучие, хорошие проводники тепла и электричества и проч.; в химическом отношении для них является характерной способность образовать с кислородом <i>основные окислы</i>, которые, соединяясь с кислотами, дают <i>соли. </i> Знакомство человека с М. началось с золота, серебра и меди, т. е. с М., встречающимися в свободном состоянии на земной поверхности; впоследствии к ним присоединились М., значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь М. были знакомы человечеству в глубокой древности. Между египетскими редкостями встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от Р. Х. К этим семи М. уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII столетия число М. быстро возрастает и в настоящее время доходит до 65. Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой М.; с историей их связаны важнейшие моменты истории химии. Свойства М. так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о М. относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе, об образовании всего существующего из 4-х элементов (огня, земли, воды и воздуха) уже тем самым указывали на <i>сложность</i> М.; но эти идеи были так туманны, так абстрактны и имели так мало реального в основе! У алхимиков понятие о сложности М. и, как результат этого, вера в возможность превращать одни М. в другие, создавать их искусственно является основным понятием их миросозерцания. Это понятие есть естественный вывод из той массы фактов, относящихся до химических превращений М., которые накопились к тому времени. В самом деле, превращение М. в совершенно непохожую на них <i>окись</i> простым прокаливанием на воздухе и обратное получение М. из окиси, выделение одних М. из других, образование сплавов, обладающих другими свойствами, чем первоначально взятые М., и проч., все это как будто должно было указывать на сложность их натуры. Что касается собственно до превращения М. в золото, то вера в возможность этого была основана на многих видимых фактах. В первое время образование сплавов, цветом похожих на золото, например из меди и цинка, в глазах алхимиков уже было превращение их в золото. Им казалось, что нужно изменить только <i>цвет</i>, и свойства М. будут другие. В особенности много способствовали этой вере плохо поставленные опыты, когда для превращения неблагородного М. в золото брались вещества, содержавшие примесь этого золота. Например, уже в конце XVIII столетия один копенгагенский аптекарь уверял, что химически чистое серебро при сплавлении с мышьяком отчасти превращается в золото. Этот факт был подтвержден известным химиком Гитоном де Морво (Guyton de Morveau) и наделал много шума. В скорости потом было показано, что мышьяк, служивший для опыта, содержал следы серебра с золотом! Так как из семи известных тогда М. одни легче подвергались превращениям, другие труднее, то алхимики делили их на благородные — совершенные, и неблагородные — несовершенные. К первым принадлежали золото и серебро, ко вторым медь, олово, свинец, железо и ртуть. Последняя, обладая свойствами благородных М., но в то же время резко отличаясь от всех металлов своим жидким состоянием и летучестью, чрезвычайно занимала тогдашних ученых, и некоторые выделяли ее в особую группу; внимание, привлекавшееся ей, было так велико, что, как увидим далее, ртуть стали считать в числе элементов, из которых образованы М., и в ней именно видели носителя металлических свойств. Принимая существование в природе перехода одних М. в другие, несовершенных в совершенные, алхимики предполагали, что в обычных условиях это превращение идет чрезвычайно медленно, целыми веками, и, может быть, не без таинственного участия небесных светил, которым в тогдашнее время приписывали такую большую роль и в судьбе человека. По странному совпадению, М. было числом семь, как и известных тогда планет, а это еще более указывало на таинственную связь между ними. У алхимиков М. часто носят название планет; золото называется Солнцем, серебро — Луной, медь — Венерой, олово — Юпитером, свинец — Сатурном, железо — Марсом и ртуть — Меркурием. Когда были открыты цинк, висмут, сурьма и мышьяк, тела, во всех отношениях схожие с М., но у которых одно из характернейших свойств металла, <i>ковкость</i>, развито в слабой степени, то они были выделены в особую группу — полуметаллов. Деление М. на собственно металлы и полуметаллы существовало еще в средине XVIII столетия. Если М. тела сложные, то что же входит в их состав? В первое время алхимики принимали, что они образованы из двух элементов — ртути и серы. Как сложилось это воззрение — сказать трудно, но его мы находим уже в VIII столетия. По Geber‘у доказательством присутствия ртути в М. служит то, что она их растворяет, и в этих растворах индивидуальность их исчезает, поглощается ртутью, чего не случилось бы, если бы в них не было одного общего с ртутью начала. Кроме того, ртуть со свинцом давала нечто похожее на олово. Что касается серы, то, может быть, она взята потому, что были известны сернистые соединения, по внешнему виду схожие с М. В дальнейшем эти простые представления, вероятно, вследствие безуспешных попыток приготовления М. искусственно, крайне усложняются, запутываются. В понятиях алхимиков, например Х—XIII столетий, ртуть и сера, из которых образованы М., не были теми ртутью и серой, которые имели в руках алхимики. Это было только нечто схожее с ними, обладающее особыми свойствами; нечто такое, которое в обыкновенной сере и ртути существовало реально, было выражено в них в большей степени, чем в других телах. Под ртутью, входящей в состав М., представляли нечто, обуславливающее неизменяемость их, металлический блеск, тягучесть, одним словом, носителя металлического вида; под серой подразумевали носителя изменяемости, разлагаемости, горючести М. Эти два элемента находились в М. в различном количестве и, как тогда говорили, различным образом фиксированные; кроме того, они могли быть различной степени чистоты. По Геберу, например, золото состояло из большого количества ртути и небольшого количества серы в высшей степени чистоты и наиболее фиксированных; в олове, напротив, предполагали много серы и мало ртути, которые были не чисты, плохо фиксированы и проч. Всем этим, конечно, хотели выразить различное отношение М. к единственному в тогдашнее время могущественному химическому агенту — огню. При дальнейшем развитии этих воззрений двух элементов — ртути и серы — для объяснения состава М. алхимикам показалось недостаточно; к ним присоединили <i>соль</i>, а некоторые мышьяк. Этим хотели указать, что при всех превращениях М. остается нечто не летучее, постоянное. Если в природе превращение неблагородных М. в благородные совершается веками, то алхимики стремились создать такие условия, в которых этот процесс совершенствования, созревания шел бы скоро и легко. Вследствие тесной связи химии с тогдашней медициной и тогдашней биологией, идея о превращении М. естественным образом отождествлялась с идеей о росте и развитии организованных тел: переход, например, свинца в золото, образование растения из зерна, брошенного в землю и как бы разложившегося, брожение, исцеление больного органа у человека — все это были частные явления одного общего таинственного жизненного процесса, <i> совершенствования</i>, и вызывались одними стимулами. Отсюда само собой понятно, что таинственное начало, дающее возможность получить золото, должно было исцелять болезни, превращать старое человеческое тело в молодое и проч. Так сложилось понятие о чудесном философском камне. Что касается роли философского камня в превращении неблагородных М. в благородные, то больше всего существует указаний относительно перехода их в золото, о получении серебра говорится мало. По одним авторам, один и тот же философский камень превращает М. в серебро и золото; по другим — существуют два рода этого вещества: одно совершенное, другое менее совершенное, и это то последнее и служит для получения серебра. Относительно количества философского камня, требующегося для превращения, указания тоже разные. По одним, 1 часть его способна превратить в золото 10000000 частей М., по другим — 100 частей и даже только 2 части. Для получения золота плавили какой-нибудь неблагородный М. или брали ртуть и бросали туда философский камень; одни уверяли, что превращение происходит мгновенно, другие же — мало-помалу и проч. Эти взгляды на природу М. и на способность их к превращениям держатся в общем в течение многих веков до XVII столетия, когда начинают резко отрицать все это, тем более что эти взгляды вызвали появление многих шарлатанов, эксплуатировавших надежду легковерных получить золото. С идеями алхимиков в особенности боролся Бойль. "Я бы хотел знать, — говорит он в одном месте, — как можно разложить золото на ртуть, серу и соль; я готов уплатить издержки по этому опыту; что касается меня, то я никогда не мог этого достигнуть". После вековых бесплодных попыток искусственного получения М. и при том количестве фактов, которые накопились к XVII столетию, например о роли воздуха при горении, увеличении веса М. при окислении, что, впрочем, знал еще Гебер в VIII столетии, вопрос об элементарности состава М., казалось, был совсем близок к окончанию; но в химии появилось новое течение, результатом которого явилась флогистонная теория, и решение этого вопроса было еще отсрочено на продолжительное время. Тогдашних ученых сильно занимали явления горения. Исходя из основной идеи тогдашней философии, что сходство в свойствах тел должно происходить от одинаковости <i>начал</i>, элементов, входящих в их состав, принимали, что тела горючие заключают общий элемент. Акт горения считался актом разложения, распадения на элементы; при этом элемент горючести выделялся в виде пламени, а другие оставались. Признавая взгляд алхимиков на образование М. из 3-х элементов, ртути, серы и соли, и принимая их реальное существование в М., горючим началом в них нужно было признать серу. Тогда другой составной частью М. нужно было, очевидно, признать остаток от прокаливания М. — их землю, как тогда говорили; следовательно, ртуть тут ни при чем. С другой стороны, сера сгорает в серную кислоту, которую многие, в силу сказанного, считали более простым телом, чем сера, и включили в число элементарных тел. Выходила путаница и противоречие. Бехер, чтобы согласовать старые понятия с новыми, принимал существование в М. <i>земли</i> трех сортов: собственно землю, землю горючую и землю ртутную. В этих-то условиях Сталь предложил свою теорию. По его мнению, началом горючести служит не сера и не какое-либо другое известное вещество, а нечто неизвестное, названное им флогистоном. М. образованы из флогистона и земли; прокаливание М. на воздухе сопровождается выделением флогистона; обратное получение М. из его земли с помощью угля — вещества, богатого флогистоном — есть акт соединения флогистона с землей. Хотя М. было несколько и каждый из них при прокаливании давал свою землю, последняя, как элемент, была одна, так что и эта составная часть М. была такого же гипотетического характера, как и флогистон; впрочем, последователи Сталя иногда принимали столько элементарных земель, сколько было М. Когда Кавендиш при растворении М. в кислотах получил водород и исследовал его свойства (неспособность поддерживать горение, его взрывчатость в смеси с воздухом и проч.), он признал в нем флогистон Сталя; М., по его понятиям, состоят из водорода и земли. Этот взгляд принимался многими последователями флогистонной теории. Несмотря на видимую стройность теории флогистона, существовали крупные факты, которые никак нельзя было связать с ней. Еще Геберу было известно, что М. при обжигании увеличиваются в весе; между тем, по Сталю, они должны терять флогистон: при обратном присоединении флогистона к земле вес полученного М. меньше веса земли. Таким образом выходило, что флогистон должен обладать каким-то особенным свойством — отрицательным тяготением. Несмотря на все остроумные гипотезы, высказанные для объяснения этого явления, оно было непонятно и вызывало недоумение. Когда Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе М. при обжигании происходит от присоединения к М. кислорода воздуха, и таким образом установил, что акт горения М. есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности М. был решен отрицательно. М. были отнесены к простым телам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. Этого взгляда химия держится поныне. <i> Металлоиды.</i> Как мы видели, одна часть простых тел образует группу М.; по предложению Берцелиуса, остальные простые тела тоже объединены в одну группу, и он дал им название металлоидов. Основанием для этого объединения были электрохимические воззрения Берцелиуса. Он представлял атомы тел биполярными и принимал, что количество электричества на обоих полюсах может быть разное, так что атом в общем мог быть заряжен положительно или отрицательно. В разных телах количество электричества в атомах предполагалось разное. При соединении различных атомов происходила или полная нейтрализация их электричеств, или частная, так что частица сложного тела или нейтральна, или заряжена известным образом. Из соединения атом, сильнее заряженный, например, положительно, мог вытеснять другой такого же рода, слабее заряженный, и проч. Подробности см. Электрохимия. При электролизе М. выделяются на отрицательном полюсе, а остальные тела (сами по себе или в соединении с кислородом) — на положительном; следовательно, можно было себе представить, что частицы М. заряжены положительным электричеством, а других тел — отрицательным, это и есть общее в натуре металлоидов, что, по Берцелиусу, и сказывается в их свойствах и дает возможность соединить их в одну группу. Представляя химическое сродство как влияние двух электричеств, становилось понятно, что тела разных групп вообще будут легче соединяться и давать более прочные соединения, чем одной и той же, и т. п. Для характеристики металлоидов указывалось, что если М., соединяясь с кислородом, вообще дают основные окислы электроположительные, то металлоиды дают вообще кислотные — электроотрицательные. Разделяя простые тела на две группы — М. и металлоидов, — еще Берцелиус указывал, что между ними существует крайне постепенный переход, так что на границе этих групп трудно сказать, имеем ли мы дело с М. или металлоидом. Например, мышьяк или даже марганец с удобством могут быть отнесены как в ту, так и в другую группу. После падения электрохимической теории исчезло основание, в силу которого неметаллы были соединены в одну группу. С другой стороны, с открытием новых элементов самое решение вопроса, имеется ли дело с М. или нет, на основании определений М. древних, стало крайне затруднительным, хотя во всяком случае понятие о М., выработанное веками, имеет такой же raison d‘ ê tre, как и понятие о щелочах, кислотах и солях. Если до сих пор делят простые тела на М. и металлоиды, то это делается в силу привычки или для удобства изложения при преподавании химии. <i> С. П. Вуколов. </i>Δ <i>. </i><br><br><br>... смотреть

МЕТАЛЛЫ И МЕТАЛЛОИДЫ

(хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резко отличают М. от других химических элементов. В физическом отношении это по большей части тела твердые при обыкновенной температуре, непрозрачные (в толстом слое), обладающие известным блеском, ковкие, тягучие, хорошие проводники тепла и электричества и проч.; в химическом отношении для них является характерной способность образовать с кислородом <span class="italic">основные окислы</span>, которые, соединяясь с кислотами, дают <span class="italic">соли. </span><br><p>Знакомство человека с М. началось с золота, серебра и меди, т. е. с М., встречающимися в свободном состоянии на земной поверхности; впоследствии к ним присоединились М., значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь М. были знакомы человечеству в глубокой древности. Между египетскими редкостями встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от Р. Х. К этим семи М. уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII столетия число М. быстро возрастает и в настоящее время доходит до 65. Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой М.; с историей их связаны важнейшие моменты истории химии. Свойства М. так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо <span class="bold"> </span> и ртуть составляли одну естественную группу однородных веществ, и понятие о М. относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе, об образовании всего существующего из 4-х элементов (огня, земли, воды и воздуха) уже тем самым указывали на <span class="italic">сложность</span> М.; но эти идеи были так туманны, так абстрактны и имели так мало реального в основе! У алхимиков понятие о сложности М.и, как результат этого, вера в возможность превращать одни М. в другие, создавать их искусственно является основным понятием их миросозерцания. Это понятие есть естественный вывод из той массы фактов, относящихся до химических превращений М., которые накопились к тому времени. В самом деле, превращение М. в совершенно непохожую на них <span class="italic">окись</span> простым прокаливанием на воздухе и обратное получение М. из окиси, выделение одних М. из других, образование сплавов, обладающих другими свойствами, чем первоначально взятые М., и проч., все это как будто должно было указывать на сложность их натуры. Что касается собственно до превращения М. в золото, то вера в возможность этого была основана на многих видимых фактах. В первое время образование сплавов, цветом похожих на золото, например из меди и цинка, в глазах алхимиков уже было превращение их в золото. Им казалось, что нужно изменить только <span class="italic">цвет</span>, и свойства М. будут другие. В особенности много способствовали этой вере плохо поставленные опыты, когда для превращения неблагородного М. в золото брались вещества, содержавшие примесь этого золота. Например, уже в конце XVIII столетия один копенгагенский аптекарь уверял, что химически чистое серебро при сплавлении с мышьяком отчасти превращается в золото. Этот факт был подтвержден известным химиком Гитоном де Морво (Guyton de Morveau) и наделал много шума. В скорости потом было показано, что мышьяк, служивший для опыта, содержал следы серебра с золотом! Так как из семи известных тогда М. одни легче подвергались превращениям, другие труднее, то алхимики делили их на благородные — совершенные, и неблагородные — несовершенные. К первым принадлежали золото и серебро, ко вторым медь, олово, свинец, железо и ртуть. Последняя, обладая свойствами благородных М., но в то же время резко отличаясь от всех металлов своим жидким состоянием и летучестью, чрезвычайно занимала тогдашних ученых, и некоторые выделяли ее в особую группу; внимание, привлекавшееся ей, было так велико, что, как увидим далее, ртуть стали считать в числе элементов, из которых образованы М., и в ней именно видели носителя металлических свойств. Принимая существование в природе перехода одних М. в другие, несовершенных в совершенные, алхимики предполагали, что в обычных условиях это превращение идет чрезвычайно медленно, целыми веками, и, может быть, не без таинственного участия небесных светил, которым в тогдашнее время приписывали такую большую роль и в судьбе человека. По странному совпадению, М. было числом семь, как и известных тогда планет, а это еще более указывало на таинственную связь между ними. У алхимиков М. часто носят название планет; золото называется Солнцем, серебро — Луной, медь — Венерой, олово — Юпитером, свинец — Сатурном, железо — Марсом и ртуть — Меркурием. Когда были открыты цинк, висмут, сурьма и мышьяк, тела, во всех отношениях схожие с М., но у которых одно из характернейших свойств металла, <span class="italic">ковкость</span>, развито в слабой степени, то они были выделены в особую группу — полуметаллов. Деление М. на собственно металлы и полуметаллы существовало еще в средине XVIII столетия.<br></p><p>Если М. тела сложные, то что же входит в их состав? В первое время алхимики принимали, что они образованы из двух элементов — ртути и серы. Как сложилось это воззрение — сказать трудно, но его мы находим уже в VIII столетия. По Geber'у доказательством присутствия ртути в М. служит то, что она их растворяет, и в этих растворах индивидуальность их исчезает, поглощается ртутью, чего не случилось бы, если бы в них не было одного общего с ртутью начала. Кроме того, ртуть со свинцом давала нечто похожее на олово. Что касается серы, то, может быть, она взята потому, что были известны сернистые соединения, по внешнему виду схожие с М. В дальнейшем эти простые представления, вероятно, вследствие безуспешных попыток приготовления М. искусственно, крайне усложняются, запутываются. В понятиях алхимиков, например Х—XIII столетий, ртуть и сера, из которых образованы М., не были теми ртутью и серой, которые имели в руках алхимики. Это было только нечто схожее с ними, обладающее особыми свойствами; нечто такое, которое в обыкновенной сере и ртути существовало реально, было выражено в них в большей степени, чем в других телах. Под ртутью, входящей в состав М., представляли нечто, обуславливающее неизменяемость их, металлический блеск, тягучесть, одним словом, носителя металлического вида; под серой подразумевали носителя изменяемости, разлагаемости, горючести М. Эти два элемента находились в М. в различном количестве и, как тогда говорили, различным образом фиксированные; кроме того, они могли быть различной степени чистоты. По Геберу, например, золото состояло из большого количества ртути и небольшого количества серы в высшей степени чистоты и наиболее фиксированных; в олове, напротив, предполагали много серы и мало ртути, которые были не чисты, плохо фиксированы и проч. Всем этим, конечно, хотели выразить различное отношение М. к единственному в тогдашнее время могущественному химическому агенту — огню. При дальнейшем развитии этих воззрений двух элементов — ртути и серы — для объяснения состава М. алхимикам показалось недостаточно; к ним присоединили <span class="italic">соль</span>, а некоторые мышьяк. Этим хотели указать, что при всех превращениях М. остается нечто не летучее, постоянное. Если в природе превращение неблагородных М. в благородные совершается веками, то алхимики стремились создать такие условия, в которых этот процесс совершенствования, созревания шел бы скоро и легко. Вследствие тесной связи химии с тогдашней медициной и тогдашней биологией, идея о превращении М. естественным образом отождествлялась с идеей о росте и развитии организованных тел: переход, например, свинца в золото, образование растения из зерна, брошенного в землю и как бы разложившегося, брожение, исцеление больного органа у человека — все это были частные явления одного общего таинственного жизненного процесса, <span class="italic"> совершенствования</span>, и вызывались одними стимулами. Отсюда само собой понятно, что таинственное начало, дающее возможность получить золото, должно было исцелять болезни, превращать старое человеческое тело в молодое и проч. Так сложилось понятие о чудесном философском камне. Что касается роли философского камня в превращении неблагородных М. в благородные, то больше всего существует указаний относительно перехода их в золото, о получении серебра говорится мало. По одним авторам, один и тот же философский камень превращает М. в серебро и золото; по другим — существуют два рода этого вещества: одно совершенное, другое менее совершенное, и это то последнее и служит для получения серебра. Относительно количества философского камня, требующегося для превращения, указания тоже разные. По одним, 1 часть его способна превратить в золото 10000000 частей М., по другим — 100 частей и даже только 2 части. Для получения золота плавили какой-нибудь неблагородный М. или брали ртуть и бросали туда философский камень; одни уверяли, что превращение происходит мгновенно, другие же — мало-помалу и проч. Эти взгляды на природу М. и на способность их к превращениям держатся в общем в течение многих веков до XVII столетия, когда начинают резко отрицать все это, тем более что эти взгляды вызвали появление многих шарлатанов, эксплуатировавших надежду легковерных получить золото. С идеями алхимиков в особенности боролся Бойль. "Я бы хотел знать, — говорит он в одном месте, — как можно разложить золото на ртуть, серу и соль; я готов уплатить издержки по этому опыту; что касается меня, то я никогда не мог этого достигнуть". После вековых бесплодных попыток искусственного получения М. и при том количестве фактов, которые накопились к XVII столетию, например о роли воздуха при горении, увеличении веса М. при окислении, что, впрочем, знал еще Гебер в VIII столетии, вопрос об элементарности состава М., казалось, был совсем близок к окончанию; но в химии появилось новое течение, результатом которого явилась флогистонная теория, и решение этого вопроса было еще отсрочено на продолжительное время. Тогдашних ученых сильно занимали явления горения. Исходя из основной идеи тогдашней философии, что сходство в свойствах тел должно происходить от одинаковости <span class="italic">начал</span>, элементов, входящих в их состав, принимали, что тела горючие заключают общий элемент. Акт горения считался актом разложения, распадения на элементы; при этом элемент горючести выделялся в виде пламени, а другие оставались. Признавая взгляд алхимиков на образование М. из 3-х элементов, ртути, серы и соли, и принимая их реальное существование в М., горючим началом в них нужно было признать серу. Тогда другой составной частью М. нужно было, очевидно, признать остаток от прокаливания М. — их землю, как тогда говорили; следовательно, ртуть тут ни при чем. С другой стороны, сера сгорает в серную кислоту, которую многие, в силу сказанного, считали более простым телом, чем сера, и включили в число элементарных тел. Выходила путаница и противоречие. Бехер, чтобы согласовать старые понятия с новыми, принимал существование в М. <span class="italic">земли</span> трех сортов: собственно землю, землю горючую и землю ртутную. В этих-то условиях Сталь предложил свою теорию. По его мнению, началом горючести служит не сера и не какое-либо другое известное вещество, а нечто неизвестное, названное им флогистоном. М. образованы из флогистона и земли; прокаливание М. на воздухе сопровождается выделением флогистона; обратное получение М. из его земли с помощью угля — вещества, богатого флогистоном — есть акт соединения флогистона с землей. Хотя М. было несколько и каждый из них при прокаливании давал свою землю, последняя, как элемент, была одна, так что и эта составная часть М. была такого же гипотетического характера, как и флогистон; впрочем, последователи Сталя иногда принимали столько элементарных земель, сколько было М. Когда Кавендиш при растворении М. в кислотах получил водород и исследовал его свойства (неспособность поддерживать горение, его взрывчатость в смеси с воздухом и проч.), он признал в нем флогистон Сталя; М., по его понятиям, состоят из водорода и земли. Этот взгляд принимался многими последователями флогистонной теории. Несмотря на видимую стройность теории флогистона, существовали крупные факты, которые никак нельзя было связать с ней. Еще Геберу было известно, что М. при обжигании увеличиваются в весе; между тем, по Сталю, они должны терять флогистон: при обратном присоединении флогистона к земле вес полученного М. меньше веса земли. Таким образом выходило, что флогистон должен обладать каким-то особенным свойством — отрицательным тяготением. Несмотря на все остроумные гипотезы, высказанные для объяснения этого явления, оно было непонятно и вызывало недоумение. Когда Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе М. при обжигании происходит от присоединения к М. кислорода воздуха, и таким образом установил, что акт горения М. есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности М. был решен отрицательно. М. были отнесены к простым телам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. Этого взгляда химия держится поныне. <span class="italic"><br><p>Металлоиды.</p></span> Как мы видели, одна часть простых тел образует группу М.; по предложению Берцелиуса, остальные простые тела тоже объединены в одну группу, и он дал им название металлоидов. Основанием для этого объединения были электрохимические воззрения Берцелиуса. Он представлял атомы тел биполярными и принимал, что количество электричества на обоих полюсах может быть разное, так что атом в общем мог быть заряжен положительно или отрицательно. В разных телах количество электричества в атомах предполагалось разное. При соединении различных атомов происходила или полная нейтрализация их электричеств, или частная, так что частица сложного тела или нейтральна, или заряжена известным образом. Из соединения атом, сильнее заряженный, например, положительно, мог вытеснять другой такого же рода, слабее заряженный, и проч. Подробности см. Электрохимия. При электролизе М. выделяются на отрицательном полюсе, а остальные тела (сами по себе или в соединении с кислородом) — на положительном; следовательно, можно было себе представить, что частицы М. заряжены положительным электричеством, а других тел — отрицательным, это и есть общее в натуре металлоидов, что, по Берцелиусу, и сказывается в их свойствах и дает возможность соединить их в одну группу. Представляя химическое сродство как влияние двух электричеств, становилось понятно, что тела разных групп вообще будут легче соединяться и давать более прочные соединения, чем одной и той же, и т. п. Для характеристики металлоидов указывалось, что если М., соединяясь с кислородом, вообще дают основные окислы электроположительные, то металлоиды дают вообще кислотные — электроотрицательные. Разделяя простые тела на две группы — М. и металлоидов, — еще Берцелиус указывал, что между ними существует крайне постепенный переход, так что на границе этих групп трудно сказать, имеем ли мы дело с М. или металлоидом. Например, мышьяк или даже марганец с удобством могут быть отнесены как в ту, так и в другую группу. После падения электрохимической теории исчезло основание, в силу которого неметаллы были соединены в одну группу. С другой стороны, с открытием новых элементов самое решение вопроса, имеется ли дело с М. или нет, на основании определений М. древних, стало крайне затруднительным, хотя во всяком случае понятие о М., выработанное веками, имеет такой же raison d' ê tre, как и понятие о щелочах, кислотах и солях. Если до сих пор делят простые тела на М. и металлоиды, то это делается в силу привычки или для удобства изложения при преподавании химии. <span class="italic"><br><p>С. П. Вуколов. </p></span>Δ <span class="italic">. </span><br></p>... смотреть

МЕТАЛЛЫ И СПЛАВЫ

охватывают следующие необработанные и полуфабрикатные формы: необработанные формы - аноды, шары, полосы (включая отрубленные полосы и проволочные полосы), металлические заготовки, блоки, стальные болванки, брикеты, бруски, катоды, кристаллы, кубы, стаканы, зерна, гранулы, слитки, глыбы, катыши, чушки, порошок, кольца, дробь, слябы, куски металла неправильной формы, губка, прутки; полуфабрикатные формы (независимо от того, облицованы, анодированы, просверлены либо прессованы они или нет): а) определенной формы или обработанные материалы, полученные путем прокатки, волочения, горячей штамповки выдавливанием, ковки, импульсного выдавливания, прессования, дробления, распыления и размалывания, а именно: угольники, швеллеры, кольца, диски, пыль, хлопья, фольга и лист, поковки, плиты, порошок, изделия, обработанные прессованием или штамповкой, ленты, фланцы, прутки (включая сварные брусковые прутки, проволочные прутки и прокатанные проволоки), профили, формы, листы, полоски, трубы и трубки (включая трубные кольца, трубные прямоугольники и полостные трубки), тянутая или экструдированная проволока; б) литейный материал (отливки), полученный литьем в песке, матрице, металле, пластике или других типах материалов, включая литье под высоким давлением, "шлаковые формы" (оплавляемые модели) и формы, полученные с помощью порошковой металлургии. ... смотреть

МЕТАЛЛЫ ЛЕГКИЕ

жеңіл металдар

МЕТАЛЛЫ ЛЕГКИЕ

— иногда под этим назв. объединяют Аl и Mg.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МЕТАЛЛЫ ЛЕГКОПЛАВКИЕ

оңайбалқығыш металдар

МЕТАЛЛЫ МАЛЫЕ

— уст. групповое наименование для таких металлов, как Sn, W, Mo, Sb, Hg и некоторые др., обычно относимые теперь к редким металлам.Геологический словар... смотреть

МЕТАЛЛЫ ОРГАНИЧЕСКИЕ

, орг. соед., обладающие металлич. проводимостью. В М. о. перенос электрона в твердой фазе осуществляется по орг. компоненте молекулы. М. о. наз. ... смотреть

МЕТАЛЛЫ ПЕРВИЧНЫЕ

алғашқы металдар

МЕТАЛЛЫ ПЕРЕХОДНЫЕ

өтпелі металдар

МЕТАЛЛЫ ПЛАТИНОВЫЕ

платиналық металдар

МЕТАЛЛЫ ПЛАТИНОВЫЕ

• металлы m pl платиновые english: platinum metals deutsch: Platinmetalle n pl français: platinoïdes m pl

МЕТАЛЛЫ РАДИОАКТИВНЫЕ

радиобелсенді металдар

МЕТАЛЛЫ РАССЕЯННЫЕ

шашыраңқы металдар

МЕТАЛЛЫ РАССЕЯННЫЕ

• металлы m pl рассеянные english: trace metals deutsch: gestreute Metalle n pl français: métaux m pl dispersés

T: 354