МАГНИТНАЯ ГИДРОДИНАМИКА МГД

МАГНИТНАЯ ГИДРОДИНАМИКА (МГД), наука о движении электропроводящих жидкостей и газов в присутствии магнитного поля; раздел физики, развившийся "на стыке" гидродинамики и классической электродинамики. Характерными для М. г. объектами являются плазма (настолько, что М. г. иногда рассматривают как раздел физики плазмы), жидкие металлы и элек трол ит ы.

Первые исследования по М. г. восходят ко временам М. Фарадея, но как самостоятельная отрасль знания М. г. стала развиваться в 20 в. в связи с потребностями астрофизики и геофизики. Было установлено, что мн. космич. объекты обладают магнитными полями. Так, в атмосферах звёзд наблюдаются поля напряжённостью ~ 10 000 э (на Солнце до 5000 э), а в открытых в 1969 пульсарах, по совр. представлениям, напряжённости полей достигают 1012 э. Динамич. поведение находящейся в подобных полях плазмы радикально изменяется, т. к. плотность энергии магнитного поля становится сравнимой с плотностью кинетич. энергии частиц плазмы (или превышает её). Этот же критерий справедлив и для слабых космич. магнитных полей напряжённостью 10-3 - 10-5 э (в межзвёздном пространстве, поле Земли в верхней атмосфере и за её пределами), если в областях, занимаемых ими, концентрация заряж. частиц низка. Т. о., возникла необходимость в создании спец. теории движения космической плазмы в магнитных полях, получившей название космической электродинамики, а в случае, когда плазму можно рассматривать как сплошную среду - космической магнитогидродинамики (космич. МГД).

Осн. положения М. г. были сформулированы в 1940-х гг. X. Альфвеном, к-рый в 1970 за создание М. г. был удостоен Нобелевской пр. по физике. Им было теоретически предсказано существование специфич. волновых движений проводящей среды в магнитном поле, получивших назв. волн Альфвена. Начав формироваться как наука о поведении космич. плазмы, М. г. вскоре распространила свои методы и на проводящие среды в земных условиях (гл. обр. создаваемые в научных исследованиях и в производств, деятельности). В нач. 1950-х гг. развитию М. г., как и физики плазмы в целом, дали мощный импульс нац. программы (СССР, США, Великобритания) исследований по проблеме управляемого термоядерного синтеза. Появились и быстро совершенствуются многочисл. технич. применения М. г. (МГД-насосы, генераторы, сепараторы, ускорители, перспективные для космич. полётов плазменные двигатели и пр.).

В основе М. г. лежат две группы законов физики: ур-ния гидродинамики и ур-ния электромагнитного поля (Максвелла уравнения). Первые описывают течения проводящей среды (жидкости или газа); однако, в отличие от обычной гидродинамики, эти течения связаны с распределёнными по объёму среды электрическими токами. Присутствие магнитного поля приводит к появлению в ур-ниях дополнит, члена, соответствующего действующей на эти токи распределённой по объёму электродинамич. силе (см. Ампера закон, Лоренца сила). Сами же токи в среде и вызываемые ими искажения магнитного поля определяются второй группой ур-ний. Т. о., в М. г. ур-ния гидродинамики и электродинамики оказываются существенно взаимосвязанными. Следует отметить, что в М. г. в ур-ниях Максвелла почти всегда можно пренебречь токами смещения (нерелятивистская М. г.).

В общем случае ур-ния М. г. нелинейны и весьма сложны для решения, но в практич. задачах часто можно ограничиться теми или иными предельными режимами, при оценке к-рых важным параметром служит безразмерная величина, наз. магнитным Рейнолъдса числом:

(L - характерный для течения среды размер, V - характерная скорость течения, Vm= с2/4Пи*б - т. н. магнитная вязкость, описывающая диссипацию энергии магнитного поля, а - электрич. проводимость среды, с - скорость света в вакууме; здесь и ниже используется абс. система единиц Гаусса, см. СГС система единиц).

При Rm << 1 (что обычно для лабораторных условий и технич. применений) течение проводящей среды слабо искажает магнитное поле, к-рое поэтому можно считать заданным внешними источниками. Такое течение может быть использовано, напр., для генерации электрич. тока - энергия гидродинамич. движения среды превращается в энергию тока во внешней цепи (см. Магнитогидродинамический генератор). Напротив, если ток в среде поддерживается внешней эдс, то наличие внешнего магнитного поля вызывает появление упомянутой выше объёмной электродинамич. силы, к-рая создаёт в среде перепад давления и приводит её в движение. Этот эффект используется в МГД-насосах (напр., для перекачивания расплавленного металла) и плазменных ускорителях. Объёмная электродинамич. сила даёт также возможность создавать регулируемую выталкивающую (архимедову) силу, к-рая действует на помещённые в проводящую жидкость тела. На этом важном эффекте основано действие МГД-сепараторов. Таковы осн. технич. применения М. г. Кроме того, в М. г. находят естеств. обобщение известные задачи обычных гидродинамики и газовой динамики: обтекание тел, пограничный слой и др.; в ряде случаев (напр., при полётах в ионосфере космич. аппаратов, в каналах, по к-рым текут проводящие среды) оказывается возможным с помощью магнитного поля существенно влиять на свойства соответствующих течений.

Однако наиболее интересные и разнообразные эффекты характерны для др. лредельного класса сред, рассматриваемых в М. г.,- для сред с Дт" 1, т. е. с высокой проводимостью и (или) большими размерами. Эти условия, как правило, выполняются в средах, изучаемых в гео- и астрофизич. приложениях М. г., а также в горячей (напр., термоядерной) плазме. Течения в таких средах чрезвычайно сильно влияют на магнитное поле в них. Одним из важнейших эффектов в этих условиях является вмороженность магнитного поля. В хорошо (строго говоря - идеально) проводящей среде индукция электромагнитная вызывает появление токов, препятствующих какому бы то ни было изменению магнитного потока через всякий материальный контур. В движущейся МГД-среде с Rm " 1 это справедливо для любого контура, образуемого её частицами. В результате магнитный поток через любой движущийся и меняющий свои размеры элемент среды остаётся неизменным (с тем большей степенью точности, чем больше величина Rm), и в этом смысле говорят о "вмороженности" магнитного поля. Это во многих случаях позволяет, не прибегая к громоздким расчётам, с помощью простых представлений получить качественную картину течений среды и деформаций магнитного поля - следует только рассматривать магнитные силовые линии как упругие нити, на которые нанизаны частицы среды. Более строгое рассмотрение этого "упругого" действия магнитного поля на проводящую среду показывает, что оно сводится к изотропному (т. е. одинаковому по всем направлениям) "магнитному" давлению рм = В2/8Пи, которое добавляется к обычному газодинамическому давлению среды р, и магнитному натяжению Т = В2/4Пи направленному вдоль силовых линий поля (магнитная проницаемость всех представляющих интерес для М. г. сред с большой точностью равна 1, и можно с равным правом пользоваться как магнитной индукцией В, так и напряжённостью Н).

Наличие дополнит, "упругих" натяжений в МГД-средах приводит к специфическому колебательному (волновому) процессу - волнам Альфвена. Они обусловлены магнитным натяжением Т и распространяются вдоль силовых линий (подобно волнам, бегущим вдоль упругой нити) со скоростью

где р - плотность среды. Волны Альфвена описываются точным решением нелинейных ур-ний М. г. для несжимаемой среды. Ввиду сложности этих ур-ний таких точных решений для больших Rmполучено очень немного. Ещё одно из них описывает течение несжимаемой (р = const) жидкости с той же альф-веновской скоростью (2) вдоль произвольного магнитного поля. Известно точное решение и для т. н. МГД-разрывов, к-рые включают контактные, тангенциальные и вращательные разрывы, а также быструю и медленную ударные волны. В контактном разрыве магнитное поле пересекает границу раздела двух различных сред, препятствуя их относительному движению (в приграничном слое среды неподвижны одна относительно другой). В тангенциальном разрыве поле не пересекает границу раздела двух сред (его составляющая, нормальная к границе, равна нулю), и эти среды могут находиться в относит, движении. Частным случаем тангенциального разрыва является нейтральный токовый слой, разделяющий равные по величине и противоположно направленные магнитные поля. В М. г. доказывается, что при нек-рых условиях магнитное поле стабилизирует тангенциальный разрыв скорости, к-рый абсолютно неустойчив в обычной гидродинамике. Специфическим для М. г. (не имеющим аналога в гидродинамике непроводящих сред) является вращательный разрыв, в к-ром вектор магнитной индукции, не изменяясь по абс. величине, поворачивается вокруг нормали к поверхности разрыва. Магнитные натяжения в этом случае приводят среду в движение таким образом, что вращательный разрыв распространяется по направлению нормали к поверхности с альфвеновской скоростью (2), если под В в (2) понимать нормальную составляющую индукции. Быстрые и медленные ударные волны в М. г. отличаются от обычных ударных волн тем, что частицы среды после прохождения фронта волны получают касательный к фронту импульс за счёт магнитных натяжений (ведь магнитные силовые линии можно рассматривать как упругие нити, см. выше). В быстрой ударной волне магнитное поле за её фронтом усиливается, скачок магнитного давления на фронте действует в ту же сторону, что и скачок газодинамич, давления, и поэтому скорость такой волны больше скорости звука в среде. В медленной ударной волне, напротив, поле после её прохождения ослабевает, перепады газо-дйнамич. и магнитного давления на фронте волны направлены противоположно; скорость медленной волны меньше скорости звука. Число теоретически мыслимых необратимых ударных волн в М. г. оказывается значительно больше, чем реально существующих. Отбор решений, соответствующих действительности, производится с помощью т. н. условия эволюционности, следующего из рассмотрения устойчивости ударных волн при их взаимодействии с колебаниями малой амплитуды.

Известные точные решения, однако, далеко не исчерпывают содержания теоре-тич. М. г. сред с Rм"1. Широкий класс задач удаётся исследовать приближённо. При таком исследовании возможны два основных подхода: приближение слабого поля, когда магнитные давление и натяжение малы по сравнению с остальными динамическими факторами (газодинамическим давлением и инерциальными силами), и приближение сильного поля, когда

здесь v - скорость среды, р - ее газодинамич. давление.

В приближении слабого поля течение среды определяется обычными газодинамич. факторами (влиянием магнитных натяжений пренебрегают). При этом требуется рассчитать изменения поля в среде, движущейся по заданному закону. К этому классу задач относится очень важная проблема гидро магнитного динамо и проблема МГД-турбулентности. Первая состоит в отыскании ламинарных течений проводящих сред, к-рые могут создавать, усиливать и поддерживать магнитное поле. Задача о гидромагнитном динамо является основой теории земного магнетизма и магнетизма Солнца и звёзд. Существуют простые кинематич. модели, показывающие, что гидромагнитное динамо в принципе может быть осуществлено при спец. выборе распределений скоростей среды. Однако строгого доказательства, что такие распределения реализуются в действительности, пока нет.

Основным в проблеме МГД-турбулент-ности является выяснение поведения слабого исходного ("затравочного") магнитного поля в турбулентной проводящей среде (см. Турбулентность). Имеется доказательство роста среднего квадрата напряжённости случайно возникшего слабого начального поля, т. е. возрастания магнитной энергии в начальной стадии процесса. Однако остаётся открытой проблема установившегося турбулентного состояния, связанная с происхождением магнитных полей в космич. пространстве, в частности в нашей и др. галактиках.

Приближение сильного поля, в к-ром определяющими являются магнитные натяжения, применяют при изучении разреженных атмосфер космич. магнитных тел, напр. Солнца и Земли. Есть основания полагать, что именно это приближение окажется полезным для исследования процессов в удалённых астрофизич. объектах - сверхновых звёздах, пульсарах, квазарах и пр. В условиях, отвечающих (3), изменения магнитного поля вблизи его источников (появление активных областей и пятен на Солнце, смещение магнитопаузы в магнитном поле Земли под действием солнечного ветра и т. д.) переносятся с альфвеновской скоростью (2) вдоль поля, вызывая соответствующие перемещения плазмы. В результате действия магнитных сил возникают такие характерные образования, как выбросы и протуберанцы, шлемовидные структуры и стримеры на Солнце, магнитный хвост Земли (см. Солнце; Солнечная активность; Земля, раздел Магнитосфера).

Особенно интересные явления имеют место в окрестностях тех точек сильного поля, в к-ром оно обращается в нуль. В таких областях образуются тонкие токовые слои, разделяющие магнитные поля противоположного направления (т. н. нейтральные слои). В этих слоях происходит процесс "аннигиляции" магнитной энергии, т. е. её высвобождение и превращение в др. формы. В частности, в них возникают сильные электрич. поля, ускоряющие заряж.частицы. Аннигиляция магнитного поля в нейтральных токовых слоях ответственна за появление хромосферных вспышек на Солнце и суббурь в земной магнитосфере (см. Магнитные бури). Вероятно, с ней связаны и мн. др. резко нестационарные процессы во Вселенной, сопровождающиеся генерацией ускоренных заряж. частиц и жёстких излучений. С точки зрения М. г. нейтральные слои представляют собой разрывы непрерывности магнитного поля (подобно ударным волнам и тангенциальным разрывам). Однако процессы в токовых слоях и прежде всего неустойчивости, приводящие к появлению сильных ускоряющих электрич. полей, выходят за рамки М. г. и относятся к тонким и ещё не вполне разработанным вопросам физики плазмы.

Лит.: А п ь ф в е н Г., фельтхаммар К.- Г., Космическая электродинамика, пер. с англ., 2 изд., М., 1967; Сыроватский С. И., Магнитная гидродинамика, "Успехи физических наук", 1957, т. 62, в. 3; Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М.. 1962; Шерклиф Дж., Курс магнитной гидродинамики, пер. с англ., М., 1967; Половин Р. В., Ударные волны в магнитной гидродинамике, "Успехи физических наук", 1960, т. 72, в. 1; Брагинский С. И., Явления переноса в плазме, в сб.: Вопросы теории плазмы, вып. 1, М., 1963; П и к е л ь н е р С. Б., Основы космической электродинамики, М., 1966; Данжи Д ж., Космическая электродинамика, пер. с англ., М., 1961; Андерсон Э., Ударные волны в магнитной гидродинамике, пер. с англ., М., 1968; Ландау Л. Д., Л и ф ш и ц Е. М., Электродинамика сплошных сред, М., 1959 (Теоретическая физика). С. И, Сыроватский.




Смотреть больше слов в «Большой советской энциклопедии»

МАГНИТНАЯ ГОЛОВКА →← МАГНИТНАЯ ВЯЗКОСТЬ

T: 173