МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ, учение об общих свойствах множеств, преимущественно бесконечных. Понятие м н о-ж е с т в а, или совокупности, принадлежит к числу простейших математических понятий; оно не определяется, но может быть пояснено при помощи примеров. Так, можно говорить о множестве всех книг, составляющих данную библиотеку, множестве всех точек данной линии, множестве всех решений данного уравнения. Книги данной библиотеки, точки данной линии, решения данного уравнения являются элементами соответствующего множества. Чтобы определить множество, достаточно указать характеристич. свойство элементов, т. е. такое свойство, к-рым обладают все элементы этого множества и только они. Может случиться, что данным свойством не обладает вообще ни один предмет; тогда говорят, что это свойство определяет пустое множество. То, что данный предмет х есть элемент множества М, записывают так: х е М (читают: х принадлежит множеству М).

Подмножества. Если каждый элемент множества А является в то же время элементом множества В, то множество А паз. подмножеством, или частью, множества В. Это записывают так: Л ? В или В Э А. Т. о., подмножеством данного множества В является и само множество В. Пустое множество, по определению, считают подмножеством всякого множества. Всякое непустое подмножество А данного множества В, отличное от всего множества В, наз. правильной частью последнего.

Мощность множеств. Первым вопросом, возникшим в применении к бесконечным множествам, был вопрос о возможности их количественного сравнения между собой. Ответ на этот и близкие вопросы дал в кон. 70-х гг. 19 в. Г. Кантор, основавший М. т. как математич. науку. Возможность сравнительной количественной оценки множеств опирается на понятие взаимно однозначного соответствия между двумя множествами. Пусть каждому элементу множества А поставлен в соответствие в силу какого бы то ни было правила или закона некоторый определённый элемент множества В; если при этом каждый элемент множества оказывается поставленным в соответствие одному и только одному элементу множества Л, то говорят, что между множествами А и В установлено взаимно однозначное, или одно-однозначное, соответствие [сокращённо: (1 - 1)-соответствие]. Очевидно, между двумя конечными множествами можно установить (1 - 1 )-соответствие тогда и только тогда, когда оба множества состоят из одного и того же числа элементов. В обобщение этого факта определяют количественную эквивалентность, или р а в н о м о щ-ность, двух бесконечных множеств как возможность установить между ними (1 - 1 )-соответствие.

Ещё до создания М. т. Б. Болъцано владел, с одной стороны, вполне точно формулированным понятием (1-1)-соот-ветствия, а с другой стороны, считал несомненным существование бесконечностей различных ступеней; однако он не только не сделал (1-1 соответствие основой установления количественной равносильности множеств, но решительно возражал против этого. Больцано останавливало то, что бесконечное множество может находиться в (1-^-соответствии со своей правильной частью. Напр., если каждому натуральному числу п поставить в соответствие натуральное число 2п, то получим (1 - 1 ^соответствие между множеством всех натуральных и множеством всех чётных чисел. Вместо того чтобы в применении к бесконечным множествам отказаться от аксиомы: часть меньше целого, Больцано отказался от взаимной однозначности как критерия равномощности и, т. о., остался вне осн. линии развития М. т. В каждом бесконечном множестве М имеется (как легко доказывается) правильная часть, равномощная всему М, тогда как ни в одном конечном множестве такой правильной части найти нельзя. Поэтому наличие правильной части, равномощ-ной целому, можно принять за определение бесконечного множества (Р. Дедекинд).

Для двух бесконечных множеств А и В возможны лишь следующие три случая: либо Л есть правильная часть, равномощная В, но в В нет правильной части, равномощной Л; либо, наоборот, в В есть правильная часть, равномощная Л, а в Л нет правильной части, равномощной В; либо, наконец, в А есть правильная часть, равномощная В, и в В есть правильная часть, равномощная Л. Доказывается, что в третьем случае множества Л и В равномощны (теорема Кантора -Бернштейна). В первом случае говорят, что мощность множества Л больше мощности множества В, во втором - что мощность множества В больше мощности множества Л. A priori возможный четвёртый случай - в Л нет правильной части, равномощной В, а в В нет правильной части, равномощной Л,- в действительности не может осуществиться (для бесконечных множеств).

Ценность понятия мощности множества определяется существованием неравно-мощных бесконечных множеств. Напр., множество всех подмножеств данного множества М имеет мощность большую, чем множеством. Множество, равномощ-ное множеству всех натуральных чисел, наэ. счётным множеством. Мощность счётных множеств есть наименьшая мощность, к-рую может иметь бесконечное множество; всякое бесконечное множество содержит счётную правильную часть. Кантор доказал, что множество всех рациональных и даже всех алгебраич. чисел счётно, тогда как множество всех действит. чисел несчётно. Тем самым было дано новое доказательство существования т. н. трансцендентных чисел, т. е. действит. чисел, не являющихся корнями никакого алгебраич. уравнения с Целыми коэффициентами (и даже несчётность множества таких чисел). Мощность множества всех действительных чисел наз. мощностью континуума. Множеству всех действительных чисел равномощны: множество всех подмножеств счётного множества, множество всех комплексных чисел и, следовательно, множество всех точек плоскости, а также множество всех точек трёх- и вообще и-мерного пространства при любом п. Кантор высказал гипотезу (т.н. континуум-гипотезу): всякое множество, состоящее из действит. чисел, либо конечно, либо счётно, либо равномощно множеству всех действит. чисел; по поводу этой гипотезы и существенных связанных с нею результатов см. Континуума проблема.

Отображения множеств. В М. т. ана-литич. понятие функции, геометрич. понятие отображения или преобразования фигуры и т. п. объединяются в общее понятие отображения одного множества в другое. Пусть даны два множества X

или значением данной функции для данного значения её аргумента х.

Примеры. 1) Пусть задан в плоскости с данной на ней прямоугольной системой координат квадрат с вершинами (0; 0), (0; 1), (1; 0), (1; 1) и осуществлена проекция этого квадрата, напр, на ось абсцисс; эта проекция есть отображение множества X всех точек квадрата на множество У всех точек его основания; точке с координатами (х; у) соответствует точка (х; 0).

2) Пусть X - множество всех действит. чисел; если для каждого действит. числа

(1 - 1 )-соответствие между двумя множествами X и У есть такое отображение множества X в множество Y, при к-ром каждый элемент множества У является образом одного и только одного элемента

множества X. Отображения примеров 2) и 3) взаимно однозначны, примера 1) - нет. Операции над множествами. С у м м о и, или объединением, двух, трёх, вообще произвольного конечного или бесконечного множества множеств наз. множество всех тех предметов, каждый из к-рых есть элемент хотя бы одного из данных множеств-слагаемых. Пересечением двух, трёх, вообще любого конечного или бесконечного множества множеств наз. множество всех элементов, общих всем данным множествам. Пересечение даже двух непустых множеств может быть пустым. Разностью между множеством В и множеством А наз. множество всех элементов из В, не являющихся элементами из А: разность между множеством В и его частью А наз. дополнением множества А в множестве В.

Операции сложения и пересечения множеств удовлетворяют условиям сочетательности и переместительности (см. Ассоциативность, Коммутативность). Операция пересечения, кроме того, распределительна по отношению к сложению и вычитанию. Эти действия обладают тем общим свойством, что если их производить над множествами, являющимися подмножествами одного и того же множества М, то и результат будет подмножеством множества М. Указанным свойством не обладает т. н. внешнее умножение множеств: внешним произведением множеств X и У наз. множество X XV всевозможных пял

ных множеств согласуется с умножением и возведением в степень натуральных чисел. Аналогично определяется сумма мощностей как мощность суммы попарно непересекающихся множеств с заданными мощностями.

Упорядоченныемножества. Установитьв данном множестве X порядок - значит установить для нек-рых пар х‘, х" элементов этого множества какое-то правило предшествования (следования1), выражае-

рассматриваемое вместе с каким-нибудь установленным в нём порядком, наз. "частично упорядоченным множеством"; иногда вместо "частично упорядоченное множество" говорят "упорядоченное множество" (Н. Бурбаки). Однако чаще упорядоченным множеством наз. такое частично упорядоченное множество, в к-ром порядок удовлетворяет след, дополнительным требованиям ("линейного порядка"): 1) никакой элемент не предшествует самому себе; 2) из всяких двух раз-

3) Всякое множество действит. чисел линейно упорядочено: меньшее из двух чисел считается предшествующим большему.

Два упорядоченных множества наз. подобными между собой, или имеющими один и тот же порядковый тип, если между ними можно установить (1 - 1)-соответствие, сохраняющее порядок. Элемент упорядоченного множества наз. первым, если он предшествует в этом упорядоченном множестве всем остальным элементам; аналогично определяется и последний элемент. Примеры: в упорядоченном множестве всех действит. чисел нет ни первого, ни последнего элемента; в упорядоченном множестве всех неотрицательных чисел нуль есть первый элемент, а последнего элемента нет; в упорядоченном множестве всех действительных чисел .г, удовлетворяющих неравенствам a <= x <= b, число а есть первый элемент, а число b - последний.

Упорядоченное множество называется вполне упорядоченным, если оно само и всякое его правильное подмножество имеют первый элемент. Порядковые типы вполне упорядоченных множеств наз. порядковыми, или ординальными, числами. Если вполне упорядоченное множество конечно, то его порядковое число есть обычное порядковое число элементарной арифметики. Порядковые типы бесконечных вполне упорядоченных множеств наз. трансфинитными числами.

Точечные множества. Теория точечных множеств, т. е. в первоначальном понимании слова - теория множеств, элементами к-рых являются действит. числа (точки числовой прямой), а также точки двух-, трёх- и вообще га-мерного пространства, основана Г. Кантором, установившим понятие предельной точки множества и примыкающие к нему понятия замкнутого множества и др. Дальнейшее развитие теории точечных множеств привело к понятиям метрического пространства и топологического пространства, изучением к-рых занимается общая топология. Наиболее самостоятельное существование ведёт дескриптивная теория множеств. Основанная франц. математиками Р. Бэром и А. Лебегом в связи с классификацией разрывных функций (1905), дескриптивная М. т. началась с изучения и классификации т. н. борелевских множеств (В-множеств). Борелев-ские множества определяются как множества, могущие быть построенными, отправляясь от замкнутых множеств, применением операций сложения и пересечения в любых комбинациях, но каждый раз к конечному или к счётному множеству множеств. А. Лебег показал, что те же множества - и только они - могут быть получены как множества точек, в к-рых входящая в Бэра классийикаиию действительная (Функ-

преимущественно рус. и польск. математиками, особенно московской школой, созданной Н. Н. Лузиным (П. С. Александров, М. Я. Суслин, М. А. Лаврентьев, А. Н. Колмогоров, П. С. Новиков). Александров доказал теорему (1916) о том, что всякое несчётное борелевское множество имеет мощность континуума. Аппарат этого доказательства был применён Суслиным для построения теории А -множеств, охватывающих как частный случай борелевские (или В-) множества (считавшиеся до того единств, множествами,принципиально могущими встретиться в анализе). Суслия показал, что множество, дополнительное к Л-множеству М, является само Л-мно-жеством только в том случае, когда множество М - борелевское (дополнение к борелевскому множеству есть всегда борелевское множество). При этом Л-множества оказались совпадающими с непрерывными образами множества всех иррациональных чисел. Теория Л-множеств в течение неск. лет оставалась в центре дескриптивной М. т. до того, как Лузин пришёл к общему определению проективных множеств, которые могут быть получены, отправляясь от множества всех иррациональных чисел при помощи повторного применения операции вычитания и непрерывного отображения. К теории Л-множеств и проективных множеств относятся также работы Новикова и др. Дескриптивная М. т. тесно связана с исследованиями по основаниям математики (с вопросами эффективной определимости математич. объектов и разрешимости математич. проблем).

Значение М. т. Влияние М. т. на развитие совр. математики очень велико. Прежде всего, М. т. явилась фундаментом ряда новых математич. дисциплин (теории функций действительного переменного, общей топологии, общей алгебры, функционального анализа и др.).

Постепенно теоретико-множественные методы находят всё большее применение и в классич. частях математики. Напр., в области математич. анализа они широко применяются в качественной теории дифференциальных уравнений, вариационном исчислении, теории вероятностей и др.

Наконец, М. т. оказала глубокое влияние на понимание самого предмета математики или таких её больших отделов, как геометрия. Только М. т. позволила отчётливо сформулировать понятие изоморфизма систем объектов, заданных вместе со связывающими их отношениями, и привела к пониманию того обстоятельства, что каждая математич. теория в её чистой абстрактной форме изучает ту или иную систему объектов лишь "с точностью до изоморфизма", т. е. может быть без всяких изменений перенесена на любую систему объектов, изоморфную той, для изучения к-рой теория была первоначально создана.

Что касается М. т. в вопросах обоснования математики, т. е. создания строгого, логически безупречного построения математич. теорий, то следует иметь в виду, что сама М. т. нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логич. трудности, связанные с обоснованием математич. учения о бесконечности (см. Бесконечность в математике), при переходе на точку зрения общей М. т. приобретают лишь большую остроту (см. Аксиоматическая теория множеств, Логика, Конструктивная математика, Континуум).

Лит.: Лузин Н. Н., Теория функций действительного переменного, 2 изд., М., 1948; Александров П. С., Введение в общую теорию множеств и функций, М.-Л., 1948; Хаусдорф Ф., Теория множеств, пер. с нем., М.- Л., 1937.

П. С. Александров.




Смотреть больше слов в «Большой советской энциклопедии»

МНОЖЕСТВЕННЫЕ ПРОЦЕССЫ →← МНОГОЭТАЖНЫЕ ЗДАНИЯ

Смотреть что такое МНОЖЕСТВ ТЕОРИЯ в других словарях:

МНОЖЕСТВ ТЕОРИЯ

        учение об общих свойствах множеств, преимущественно бесконечных. Понятие множества, или совокупности, принадлежит к числу простейших математиче... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ         математик, теория, изучающая точными средствами проблему бесконечности. Предмет М. т.— свойства множеств (совокупностей, кла... смотреть

МНОЖЕСТВ ТЕОРИЯ

Под множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произволь... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯПод множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов. Терминология и многие результаты этой теории широко используются в математике, например в математическом анализе, геометрии и теории вероятностей.Терминология. Если каждый элемент множества B является элементом множества A, то множество B называется подмножеством множества A. Например, если множество A состоит из чисел 1, 2 и 3, то у него существует 8 подмножеств (три из них содержат по 1 элементу, три - содержат по 2 элемента, одно подмножество, по определению, есть само множество A и восьмое подмножество - это пустое множество, не содержащее ни одного элемента). Запись x ? A означает, что x - элемент множества A, а B ? A - что B является подмножеством множества A. Если универсальное множество, из которого мы берем элементы всех множеств, обозначить через I, то элементы, принадлежащие I, но не входящие в A, образуют множество, называемое дополнением множества A и обозначаемое C(A) или A?. Множество, не содержащее ни одного элемента, называется пустым множеством.Над множествами можно производить операции, напоминающие операции, производимые в арифметике над числами. Объединением AB множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B (элемент, принадлежащий множествам A и B одновременно засчитывается при включении в AB только один раз). Пересечением AB множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A, так и B. Предположим, например, что множество I состоит из всех букв русского алфавита, A - из всех согласных, а множество B - из букв, встречающихся в слове "энциклопедия". Тогда объединение AB состоит из всех букв алфавита, кроме а, ё, у, ъ, ь, ы, ю, пересечение AB - из букв д, к, л, н, п, ц, а дополнение C(A) - из всех гласных. Раздел теории множеств, который занимается исследованием операций над множествами, называется алгеброй множеств. Пустое множество играет в алгебре множеств роль нуля, и поэтому его часто обозначают символом О; например, AO = A, AO = O.Булева алгебра. Алгебра множеств является подразделом булевых алгебр, впервые возникших в трудах Дж.Буля (1815-1864). В аксиомах булевой алгебры отражена аналогия между понятиями "множества", "событие" и "высказывания". Логические высказывания можно записать с помощью множеств и проанализировать с помощью булевой алгебры.Даже не вдаваясь в детальное изучение законов булевой алгебры, мы можем получить представление о том, как она используется на примере одной из логических задач Льюиса Кэрролла. Пусть у нас имеется некоторый набор утверждений:1. Не бывает котенка, который любит рыбу и которого нельзя научить всяким забавным штукам;2. Не бывает котенка без хвоста, который будет играть с гориллой;3. Котята с усами всегда любят рыбу;4. Не бывает котенка с зелеными глазами, которого можно научить забавным штукам;5. Не бывает котят с хвостами, но без усов.Какое заключение можно вывести из этих утверждений?Рассмотрим следующие множества (универсальное множество I включает в себя всех котят): A - котята, любящие рыбу; B - котята, обучаемые забавным штукам; D - котята с хвостами; E - котята, которые будут играть с гориллой; F - котята с зелеными глазами и G - котята с усами. Первое утверждение гласит, что множество котят, которые любят рыбу, и дополнение множества котят, обучаемых забавным штукам, не имеют общих элементов. Символически это записывается как1. AC(B) = O.Аналогичным образом остальные утверждения можно записать так:2. C(D)E = O;3. G ? A;4. BF = O;5. D ? G.Принимая во внимание теоретико-множественный смысл символов (или воспользовавшись законами булевой алгебры), мы можем переписать утверждения 1, 2 и 4 в виде1. A ? B;2. E ? D;4. B ? C(F).Таким образом, мы переформулировали исходные утверждения в следующие:1. Котят, которые любят рыбу, можно обучить забавным штукам;2. У котят, которые будут играть с гориллой, есть хвосты;4. У котят, которых можно обучить забавным штукам, глаза не зеленые;Теперь можно расположить символические записи утверждений в таком порядке, чтобы последний символ предыдущего утверждения совпадал с первым символом следующего (этому условию удовлетворяет расположение утверждений в порядке 2, 5, 3, 1, 4). Возникает цепочка включений E ? D ? G ? A ? B ? C(F), из которой можно сделать вывод, что E ? C(F) или "Не бывает котенка с зелеными глазами, который будет играть с гориллой". Такое заключение едва ли очевидно, если рассматривать пять исходных утверждений в их словесной формулировке.Сравнение множеств. Если из элементов двух множеств можно составить пары таким образом, чтобы каждому элементу первого множества соответствовал определенный элемент второго множества, а каждому элементу второго множества соответствовал один и только один элемент первого множества, то говорят, что между такими двумя множествами установлено взаимно однозначное соответствие. Чтобы установить взаимно однозначное соответствие, необязательно пересчитывать элементы множеств. Например, мы знаем, что американские штаты находятся во взаимно однозначном соответствии с их столицами, хотя можем оставаться в неведении относительно общего их числа. Мы могли бы утверждать: "Столиц штатов ровно столько, сколько штатов". Между двумя конечными множествами можно установить взаимно однозначное соответствие тогда и только тогда, когда оба множества состоят из одного и того же числа элементов. В теории множеств аналогичные утверждения используются, даже когда множества содержат бесконечно много элементов. Если между двумя множествами можно установить взаимно однозначное соответствие, то говорят, что они имеют одинаковое количество элементов или равномощны. Если же при любом способе образования пар некоторые элементы из первого множества остаются без пары, то говорят, что первое множество содержит больше элементов, чем второе, или, что первое множество имеет большую мощность. С понятием мощности связаны, казалось бы, удивительные результаты. Например, на первый взгляд положительных целых чисел в два раза больше, чем четных положительных чисел, так как четно каждое второе число. Но, согласно теории множеств, четных положительных чисел столько же, сколько всех положительных целых чисел. Действительно, можно образовать пары чисел 2 и 1, 4 и 2, 6 и 3 и, вообще каждому четному числу 2n поставить в соответствие целое число n. Именно это обстоятельство имел в виду Б.Рассел (1872-1970), сформулировав факт, названный им парадоксом Тристрама Шенди. Герой романа Стерна сетовал на то, что ему потребовался целый год, чтобы изложить события первого дня его жизни, еще один год понадобился, чтобы описать второй день, и что при таком темпе он никогда не завершит свое жизнеописание. Рассел возразил, заметив, что если бы Тристрам Шенди жил вечно, то смог бы закончить свое жизнеописание, так как события n-го дня Шенди мог бы описать за n-й год и, таким образом, в летописи его жизни ни один день не остался бы не запечатленным. Иначе говоря, если бы жизнь длилась бесконечно, то она насчитывала бы столько же лет, сколько дней. Эти примеры показывают, что бесконечное множество можно поставить во взаимно однозначное соответствие со своим бесконечным подмножеством. Иногда это свойство принимают за определение бесконечного.Если можно установить взаимно однозначное соответствие между некоторым множеством и множеством положительных целых чисел, то говорят, что такое множество счетно. Для обозначения количества элементов в счетном множестве часто используют символ ?0 (алеф-нуль). Так называемые "трансфинитные" числа, например ?0, могут не подчиняться обычным законам арифметики. Например, так как существует ?0 четных чисел, ?0 нечетных и ?0 целых чисел, то приходится признать, что ?0 + ?0 = ?0. Идея сравнения множеств путем установления взаимно однозначного соответствия между ними используется в различных разделах математики. Число всех действительных чисел, как показал основатель научной теории множеств Г.Кантор (1845-1918), больше, чем ?0 чисел. Следовательно, если можно показать, что множество действительных чисел, обладающих некоторым особым свойством, является всего лишь счетным множеством, то заведомо должны существовать действительные числа, этим свойством не обладающие. Например, так как множество алгебраических чисел счетно, должны существовать неалгебраические числа. Такие числа называются трансцендентными.Поразительная и далеко не очевидная теорема, высказанная в качестве гипотезы Кантором и доказанная Э.Шрёдером и Ф.Бернштейном около 1896, утверждает, что если можно установить взаимно однозначное соответствие между множеством A и подмножеством множества B, и между множеством B и подмножеством множества A, то существует взаимно однозначное соответствие между всем множеством A и всем множеством B.Парадоксы. Мы уже упоминали о том, что в теории множеств встречаются такие утверждения, как парадокс Тристрама Шенди, которые выглядят противоречащими здравому смыслу. Эти парадоксы возникают просто потому, что теория множеств, подобно многим математическим и физическим теориям, облекает свои идеи в обычные слова, вкладывая в них особый смысл. Однако существуют и парадоксы, возникающие из-за внутренних логических трудностей самой теории множеств. Обильным источником парадоксов такого типа служит широко распространенная практика задания множества путем указания некоторого свойства его элементов, например, "множество, состоящее из английских слов, содержащих менее 19 букв".Некритическое использование такого рода определений может привести к трудностям. Например, некоторые статьи в этой энциклопедии содержат ссылки на себя, другие таких ссылок не содержат. Мы могли бы включить в нашу энциклопедию дополнительную статью, состоящую только из перечня статей, не содержащих ссылок на себя. Принадлежала бы такая статья множеству статей, не содержащих ссылок на себя, или не принадлежала бы? Любой ответ противоречил бы отличительному свойству, которым по их определению наделены элементы множества. Это - одна из форм так называемого парадокса Рассела, названного в честь своего автора Бертрана Рассела. "Множество всех множеств" - еще одно понятие, также приводящее к парадоксу. Существование парадоксов показывает, с какой осторожностью следует пользоваться терминологией теории множеств. Тем не менее теория множеств настолько полезна, что большинство математиков не хотели бы отказываться от нее. Было затрачено много усилий, чтобы развить методы, позволяющие исключить возникновение парадоксов в теории множеств. В приложениях теории множеств к другим разделам математики универсальное множество I обычно само является некоторым определенным множеством и парадоксальные ситуации здесь не возникают.Аксиома выбора. Неожиданные трудности в теории множеств могут возникнуть, казалось бы, в самых простых случаях. Если, например, задано семейство непересекающихся множеств, ни одно из которых не пусто, то интуитивно кажется очевидным, что мы можем построить новое множество, содержащее ровно по одному элементу из каждого множества, входящего в это семейство. Но если наше семейство содержит бесконечно много множеств, то для построения нового множества может потребоваться бесконечное число произвольных выборов, а законность такого процесса при тщательном анализе становится отнюдь не очевидной. Аксиома выбора, утверждающая, что такое множество существует, была впервые сформулирована в 1904 Э.Цермело (1871-1953). До сих пор не удалось показать, что аксиома выбора следует из остальных аксиом теории множеств. Но около 1938 К.Гёдель (1906-1978) показал, что если теория множеств непротиворечива (т.е. не содержит внутренних противоречий) без аксиомы выбора, то она остается непротиворечивой и после присоединения к ней аксиомы выбора. См. также АБСТРАКТНЫЕ ПРОСТРАНСТВА; ФУНКЦИЯ.... смотреть

МНОЖЕСТВ ТЕОРИЯ

        МНОЖЕСТВ ТЕОРИЯ — учение о множествах, зародившееся в середине 19 в. и изучающее свойства множеств произвольной природы. Создание М. т. было по... смотреть

МНОЖЕСТВ ТЕОРИЯ

наивная - учение о свойствах множеств, преимущественно бесконечных, элиминирующее свойства элементов, составляющих эти множества. . Понятие множес... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ — математическая теория, изучающая точ­ными средствами проблему бесконечности. Предмет М. л. — свойства множеств (совокупностей, классов, ансамблей), гл. обр. бес­конечных. Множество <i>A</i><i> </i>есть любое собрание определенных и различи­мых между собой объектов, мыслимое как единое целое. Эти объек­ты называются элементами или членами множества <i>A</i>. Если элемент <i>х </i>принадлежит множеству <i>A</i>, то это обозначается так: <i>х</i><b>Î</b><i> </i>А; если же <i>х </i>не есть элемент <i>A</i>, то это обозначается так: <i>х</i><b>Ï</b><i>А</i>.<i> </i>Если каждый элемент множества <i>A</i><i> </i>принадлежит множеству <i>В</i>,<i> </i>то это записывается так: А <b>Ì</b><b> </b>В. Множество <i>A</i><i> </i>называется в этом случае <b>подмножеством</b> <b>множества</b> <i>В</i>,<i> </i>а отношение "<b>Ì</b>" — <b>отно­шением</b> <b>включения</b> множеств. Множество, не содержащее ни одного элемента, называется <b>пустым</b> и обозначается символом 0. В приложениях М. т. часто рассматривают подмножества некоторого фиксированного множества, которое называют <b>универсальным </b>множеством и обозначают символом <i>U</i>.<i> </i>Важнейшими принципами М. т. являются принцип <b>экстенсиональности</b> и принцип <b>свертывания</b> (абстракции). Согласно принципу экстенсиональ­ности, два множества <i>A</i><i> </i>и <i>В </i>равны только в том случае, если они состоят из одних и тех же элементов. Согласно принципу свертыва­ния, любое свойство <i>Р </i>определяет некоторое множество <i>А</i>,<i> </i>эле­ментами которого являются объекты, обладающие свойством <i>Р</i>. <b>Объединение</b> множеств <i>A</i><i> </i>и <i>В </i>обозначается через <i>A</i><b>È</b>B. Объе­динение <i>A</i><i> </i>и <i>В </i>есть множество всех предметов, которые являются элементами множества <i>А </i>или множества <i>В</i>,<i> </i>т. е. <i>х </i>принадлежит объединению <i>А </i><b>È</b> <i>В</i>,<i> </i>если <i>х </i>принадлежит хотя бы одному из мно­жеств <i>А и В</i>. <b>Пересечение</b> множеств <i>A</i><i> </i>и <i>В </i>обозначается через <i>A</i><b>Ç</b>B. Пере­сечение <i>A</i><i> </i>и <i>В </i>есть множество всех предметов, являющихся элемен­тами обоих множеств <i>A</i><i> </i>и <i>В</i>,<i> </i>т. е. <i>х </i>принадлежит пересечению <i>A</i><b>Ç</b><i>B</i>,<i> </i>если <i>х </i>принадлежит как множеству <i>A</i>, так и <i>В</i>. <b>Разность</b> множеств <i>А — В </i>есть множество элементов <i>A</i>, не принадлежащих <i>В</i>. <b>Дополнением</b> множества <i>A</i><i> </i>(обозначается <i>A</i>‘) называется множество элементов универсального множества <i>U</i>,<i> </i>не принадле­жащих <i>A</i>, т. е. <i>U</i><i> </i>-<i> А</i>. Для любых подмножеств <i>A</i>, <i>В </i>и С универсального множества <i>U</i><i> </i>справедливы следующие важные равенства: <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/586d06c437e070c9675066b2/7123fe8d-ec9d-4dfb-98d9-7c7791f01f6e" class="responsive-img img-responsive" title="МНОЖЕСТВ ТЕОРИЯ фото" alt="МНОЖЕСТВ ТЕОРИЯ фото"> Некоторые из перечисленных равенств имеют специальные на­звания: 7 и 7‘ — законы идемпотентности, 9 и 9‘ — законы погло­щения, 10 и 10‘ — законы де Моргана. Классическая М. т. исходит из признания применимости к бес­конечным множествам принципов логики. В развитии М. т. в начале XX в. выявились трудности, связанные с обнаружением парадоксов — противоречий, к которым приводит применение законов фор­мальной логики к бесконечным множествам. Дальнейшая разра­ботка М. т. была связана с уточнением понятия множества и устра­нением парадоксов. <br><br><br>... смотреть

МНОЖЕСТВ ТЕОРИЯ

математическая теория, изучающая точными средствами проблему бесконечности. Предмет М. л. - свойства множеств (совокупностей, классов, ансамблей), гл.... смотреть

МНОЖЕСТВ ТЕОРИЯ

математик, теория, изучающая точными средствами проблему бесконечности. Предмет М. т.свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Осн. содержание классич. М. т. было разработано нем. математиком Г. Кантором (в поcл. трети 19 в.). Классич. М. т. исходит из признания применимости к бесконечным множествам принципов логики. В развитии М. т. в нач. 20 в. выявились трудности (в т. ч. парадоксы), связанные с применением законов формальной логики (в частности, исключённого третьего принципа) к бесконечным множествам. В ходе полемики о природе математич. понятий сложились такие направления в основаниях математики, как формализм, интуиционизм, логицизм, конструктивное направление.... смотреть

МНОЖЕСТВ ТЕОРИЯ

математич. теория, предметом изучения к-рой являются множества. М. т. сыграла выдающуюся роль в изучении идеи бесконечности, весьма важной для математики, логики и гносеологии. Осн. содержание т.н. классич. М. т. было разработано в последней трети 19 в. Кантором. В терминах М. т. удалось построить почти всю совр. математику. С 1900-х гг., в связи с открытием парадоксов в М. т. и логике, начался продолжающийся до сих пор этап усиленного логич. анализа осн. понятий М. т. Эти исследования (см. Метод аксиоматический, Типов теория, Интуиционизм, Математическая бесконечность) оказывают значит. влияние на разработку логич. оснований математики и на развитие совр. формальной (математической) логики. ... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ, раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества - простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д. То, что данный предмет (элемент, точка) х принадлежит множеству М, записывают х О М. М. т. лежит в основе многих математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Об относящихся сюда понятиях см. Подмножество, Объединение множеств, Пересечение множеств, Пустое множество, Счетное множество, Континуум.<br><br><br>... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ - раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. понятие множества - простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д. То, что данный предмет (элемент, точка) х принадлежит множеству М, записывают х О М. М. т. лежит в основе многих математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Об относящихся сюда понятиях см. Подмножество, Объединение множеств, Пересечение множеств, Пустое множество, Счетное множество, Континуум.<br>... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ, раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества - простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д. То, что данный предмет (элемент, точка) х принадлежит множеству М, записывают х О М. М. т. лежит в основе многих математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Об относящихся сюда понятиях см. Подмножество, Объединение множеств, Пересечение множеств, Пустое множество, Счетное множество, Континуум.... смотреть

МНОЖЕСТВ ТЕОРИЯ

МНОЖЕСТВ ТЕОРИЯ , раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества - простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой (точечное множество) и т. д. То, что данный предмет (элемент, точка) х принадлежит множеству М, записывают х О М. М. т. лежит в основе многих математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Об относящихся сюда понятиях см. Подмножество, Объединение множеств, Пересечение множеств, Пустое множество, Счетное множество, Континуум.... смотреть

МНОЖЕСТВ ТЕОРИЯ

раздел математики, в к-ром изучаются общие свойства множеств, преим. бесконечных. Понятие множества - простейшее матем. понятие, оно не определяется, а... смотреть

МНОЖЕСТВ ТЕОРИЯ

- раздел математики, в котором изучаются общие свойствамножеств, преимущественно бесконечных. Понятие множества - простейшеематематическое понятие, оно не определяется, а лишь поясняется при помощипримеров: множество книг на полке, множество точек на прямой (точечноемножество) и т. д. То, что данный предмет (элемент, точка) х принадлежитмножеству М, записывают х О М. М. т. лежит в основе многих математическихдисциплин; она оказала глубокое влияние на понимание предмета самойматематики. Об относящихся сюда понятиях см. Подмножество, Объединениемножеств, Пересечение множеств, Пустое множество, Счетное множество,Континуум.... смотреть

МНОЖЕСТВ ТЕОРИЯ

раздел математики, изучающий множества, отвлекаясь от конкретной природы элементов множества. Само понятие множества вводится аксиоматически и не может быть определено через какие-либо элементарные понятия. Описательное объяснение термина «множество»: совокупность, объединение некоторых объектов произвольной природы — элементов множества. Таковыми могут быть: множество целых чисел, множество звезд во Вселенной, множество точек на плоскости, множество, элементами которого являются все конечные множества и т. д. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006.... смотреть

МНОЖЕСТВ ТЕОРИЯ

раздел математики, в к-ром изучаются общие св-ва множеств, преим. бесконечных. Понятие множества - простейшее матем. понятие; оно не определяется, а по... смотреть

МНОЖЕСТВ ТЕОРИЯ

разработанный нем. математиком Георгом Кантором (1845-1918) аналитический метод для преодоления парадоксальности бесконечных множеств и дефиниции понятия множества, лишенного внутреннего противоречия. Благодаря дальнейшейму развитию теории множеств в трудах Д. Гильберта и Г. Вейля стала возможной аксиоматизация и четкое разделение различных категорий множеств. ... смотреть

МНОЖЕСТВ ТЕОРИЯ

разработанный нем. математиком Георгом Кантором (1845-1918) аналитический метод для преодоления парадоксальности бесконечных множеств и дефиниции понятия множества, лишенного внутреннего противоречия. Благодаря дальнейшейму развитию теории множеств в трудах Д. Гильберта и Г. Вейля стала возможной аксиоматизация и четкое разделение различных категорий множеств.... смотреть

МНОЖЕСТВ ТЕОРИЯ

мностваў тэорыя

T: 155