МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биол. объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров - белков и нуклеиновых к-т. Отличит, черта М. б. - изучение явлений жизни на неживых объектах или таких, к-рым присущи самые примитивные проявления жизни. Таковыми являются биол. образования от клеточного уровня и ниже: субклеточные орга-неллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее - системы, стоящие на границе живой и неживой природы, - вирусы, в т. ч. и бактериофаги, и кончая молекулами важнейших компонентов живой материи - нуклеиновых кислот и белков.

М. б.- новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией, биофизикой и биоорганической химией. Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

Фундамент, на к-ром развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой, к-рая продолжает составлять важную часть М. б., хотя и сформировалась уже в значит, мере в самостоят, дисциплину. Вычленение М. б. из биохимии продиктовано след, соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химич. веществ при определённых биологич. функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об осн. чертах химич. строения, выражаемого обычной химич. формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химич. связи. Между тем, как было подчёркнуто Л. Полингом, в биологич. системах и проявлениях жизнедеятельности осн. значение должно быть отведено не главно-валентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).

Конечный результат биохим. исследования может быть представлен в виде той или иной системы химич. уравнений, обычно полностью исчерпываемой их изображением на плоскости, т. е. в двух измерениях. Отличит, чертой М. б. является её трёхмерность. Сущность М. б. усматривается М. Перуцем в том, чтобы истолковать биологические функции в понятиях молекулярной структуры. Можно сказать, что если прежде при изучении биологич. объектов необходимо было ответить на вопрос "что", т. е. какие вещества присутствуют, и на вопрос "где"-в каких тканях и органах, то М. б. ставит своей задачей получить ответы на вопрос "как", познав сущность роли и участия всей структуры молекулы, и на вопросы "почему" и "зачем", выяснив, с одной стороны, связи между свойствами молекулы (опять-таки в первую очередь белков и нуклеиновых к-т) и осуществляемыми ею функциями и, с другой стороны, роль таких отд. функций в общем комплексе проявлений жизнедеятельности.

Решающую роль приобретают взаимное расположение атомов и их группировок в общей структуре макромолекулы, их пространственные взаимоотношения. Это касается как отдельных, индивидуальных, компонентов, так и общей конфигурации молекулы в целом. Именно в результате возникновения строго детерминированной объёмной структуры молекулы биополимеров приобретают те свойства, в силу к-рых они оказываются способными служить материальной основой биологич. функций. Такой принцип подхода к изучению живого составляет наиболее характерную, типическую черту М. б.

Историческая справка. Огромное значение исследований биологич. проблем на молекулярном уровне предвидел И. П. Павлов, говоривший о последней ступени в науке о жизни - физиологии живой молекулы. Самый термин "М. б." был впервые употреблён англ, учёным У. Аст-бери в приложении к исследованиям, касавшимся выяснения зависимостей между молекулярной структурой и фи-зич. и биологич. свойствами фибрилляр-ных (волокнистых) белков, таких, как коллаген, фибрин крови или сократительные белки мышц. Широко применять термин "М. б." стали с нач. 50-х гг. 20 в.

Возникновение М. б. как сформировавшейся науки принято относить к 1953, когда Дж. Уотсоном и Ф. Криком в Кембридже (Великобритания) была раскрыта трёхмерная структура дезоксирибонук-леиновой кислоты (ДНК). Это позволило говорить о том, каким образом детали данной структуры определяют биологич. функции ДНК в качестве материального носителя наследственной информации. В принципе, об этой роли ДНК стало известно неск. раньше (1944) в результате работ амер. генетика О. Т. Эйвери с сотрудниками (см. Молекулярная генетика), но не было известно, в какой мере данная функция зависит от молекулярного строения ДНК. Это стало возможным лишь после того, как в лабораториях У. Л. Брэгга, Дж. Бернала и др. были разработаны новые принципы рентгеноструктурного анализа, обеспечившие применение этого метода для детального познания пространств, строения макромолекул белков и нуклеиновых кислот.

Уровни молекулярной организации. В 1957 Дж. Кендрю установил трёхмерную структуру миоглобина, а в последующие годы это было сделано М. Перуцем в отношении гемоглобина. Были сформулированы представления о различных уровнях пространств, организации макромолекул. Первичная структура - это последовательность отд. звеньев (мономеров) в цепи образующейся молекулы полимера. Для белков мономерами являются аминокислоты, для нуклеиновых кислот -нуклеотиды. Линейная, нитевидная молекула биополимера в результате возникновения водородных связей обладает способностью определённым образом укладываться в пространстве, напр, в случае белков, как показал Л. Полинг, приобретать форму спирали. Это обозначается как вторичная структура. О третичной структуре говорят, когда молекула, обладающая вторичной структурой, складывается далее тем или иным образом, заполняя трёхмерное пространство. Наконец, молекулы, обладающие трёхмерной структурой, могут вступать во взаимодействие, закономерно располагаясь в пространстве относительно друг друга и образуя то, что обозначается как четвертичная структур а; её отдельные компоненты обычно наз. субъединицами.

Наиболее наглядным примером того, как молекулярная трёхмерная структура определяет биологич. функции молекулы, служит ДНК. Она обладает строением двойной спирали: две нити, идущие во взаимно противоположном направлении (антипараллелъно), закручены одна вокруг другой, образуя двойную спираль со взаимно комплементарным расположением оснований, т.е. так, что против определённого основания одной цепи всегда в другой цепи стоит такое основание, к-рое наилучшим образом обеспечивает образование водородных связей: аденин (А) образует пару с тимином (Т), гуанин (Г) - с цитозином (Ц). Такая структура создаёт оптимальные условия для важнейших биологич. функций ДНК: количественного умножения наследственной информации в процессе клеточного деления при сохранении качественной неизменности этого потока генетич. информации. При делении клетки нити двойной спирали ДНК, служащей в качестве матрицы, или шаблона, расплетаются и на каждой из них под действием ферментов синтезируется комплементарная новая нить. В результате этого из одной материнской молекулы ДНК получаются две совершенно тождественные ей дочерние молекулы (см. Клетка, Митоз).

Так же и в случае гемоглобина оказалось, что его биологич. функция - способность обратимо присоединять кислород в лёгких и затем отдавать его тканям - теснейшим образом связана с особенностями трёхмерной структуры гемоглобина и её изменениями в процессе осуществления свойственной ему физио-логич. роли. При связывании и диссоциации О2 происходят пространственные изменения конформации молекулы гемоглобина, ведущие к изменению сродства содержащихся в нём атомов железа к кислороду. Изменения размеров молекулы гемоглобина, напоминающие изменения объёма грудной клетки при дыхании, позволили назвать гемоглобин "молекулярными лёгкими".

Одна из важнейших черт живых объектов - их способность тонко регулировать все проявления жизнедеятельности. Крупным вкладом М. б. в науч. открытия следует считать раскрытие нового, ранее неизвестного регуляторного механизма, обозначаемого как аллостериче-ский эффект. Он заключается в способности веществ низкой мол. массы-т. н. лигандов -видоизменять специфич. биологич. функции макромолекул, в первую очередь каталитически действующих белков - ферментов, гемоглобина, рецепторных белков, участвующих в построении биологических мембран, в синаптич. передаче (см. Синапсы) и т. д.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, напр., с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химич. и физич. экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значит, числа представителей точных наук - физиков, химиков, кристаллографов, а затем и математиков -в разработку биологич. проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологич. функции ДНК, всех типов РНК и рибосом, раскрытие генетического кода; открытие обратной транскрипции, т. е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов, принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных генов; химич., а затем биологич. (ферментативный) синтез гена, в т. ч. человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в т. ч. в клетки человека; стремительно идущая расшифровка химич. структуры возрастающего числа индивидуальных белков, гл. обр. ферментов, а также нуклеиновых к-т; обнаружение явлений "самосборки" нек-рых биологич. объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т. д.; выяснение ал-лостерических и др. осн. принципов регулирования биол. функций и процессов.

Редукцяонизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, к-рое обозначается как "редукционизм", т. е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естеств. условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий - водородных связей, ван-дер-ваальсовых, электростатич. сил и т. д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как "интегратив-ная информация". Её следует рассматривать как одну из гл. частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, напр., образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей - белков и нуклеиновой к-ты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т. д. Изучение этих явлений непосредственно связано с познанием осн. феноменов "узнавания" молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот - в молекулах белков или нуклеотидов - в нуклеиновых к-тах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, напр, транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетич. кода); наконец, это образование мн. типов структур (напр., рибосом, вирусов, хромосом), в к-рых участвуют и белки, и нуклеиновые к-ты. Раскрытие соответствующих закономерностей, познание "языка", лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей "узнавания", самосборки и интеграции) актуальным направлением науч. поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых к-т. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитич. методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, гл. вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование к-рых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физич. экспериментальные подходы (напр., использование ЭВМ, синхро-тронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практич. характера, ответ на к-рые ожидается от М. о., на первом месте стоит проблема молекулярных основ злокачеств, роста, далее - пути предупреждения, а быть может, и преодоления наследств, заболеваний - "молекулярных болезней". Большое значение будет иметь выяснение молекулярных основ биологич. катализа, т. е. действия ферментов. К числу важнейших совр. направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов, токсич. и лекарств, веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б.-познание природы нервных процессов, механизмов памяти и т. д. Один из важных формирующихся разделов М. б.-т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетич. аппаратом (гено-мом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний и исправления генетич. дефектов). О более обширных вмешательствах в генетич. основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживаю-щи (напр., получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хоз. или мед. важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных н.-и. центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании -Лаборатория молекулярной биологии в Кембридже, Королевский ин-т в Лондоне; во Франции - ин-ты молекулярной биологии в Париже, Марселе, Страсбург, Пастеровский ин-т; в США - отделы М. б. в ун-тах и ин-тах в Бостоне (Гарвардский ун-т, Массачусетсский тех-нологич. ин-т), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский тех-нологич. ин-т), Нью-Йорке (Рокфеллеровский ун-т), ин-ты здравоохранения в Бетесде и др.; в ФРГ - ин-ты Макса Планка, ун-ты в Гёттингене и Мюнхене; в Швеции - Каролинский ин-т в Стокгольме; в ГДР - Центр, ин-т молекулярной биологии в Берлине, ин-ты в Йене и Галле; в Венгрии - Биол. центр в Сегеде. В СССР первый специализированный ин-т М. б. был создан в Москве в 1957 в системе АН СССР (см.. Молекулярной биологии институт); затем были образованы: Ин-т биоорганической химии АН СССР в Москве, Ин-т белка в Пущино, Биол. отдел в Ин-те атомной энергии (Москва), отделы М.б.в ин-тах Сио. отделения АН в Новосибирске, Межфакультетская лаборатория биоор-ганич. химии МГУ, сектор (затем ин-т) молекулярной биологии и генетики АН УССР в Киеве; значит, работа по М.б. ведётся в Ин-те высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и др. ведомств.

Наряду с отд. н.-и. центрами возникли организации более широкого масштаба. В Зап. Европе возникла Европ. организация по М. б. (ЕМБО), в к-рой участвует св. 10 стран. В СССР при Ин-те молекулярной биологии в 1966 создан науч. совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются -"зимние школы" по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем науч. советы по М. 6. были созданы при АМН СССР и мн. респ. Академиях наук. С 1966 выходит журнал "Молекулярная биология" (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значит, отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисл. молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Эн-гельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Сов. Мин. СССР (май 1974) "О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве".

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердьи А., Биоэнергетика, пер. с англ., М., 1960; А н ф и н-с е н К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., В э-л е н с Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с англ., ч. 1, М., 1964; В о л ь к е н-ш т е и н М. В., Молекулы н жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия н функции белков, пер. с англ., М., 1965; Б р е с л е р С. Е., Введение в молекулярную биологию, 3 изд., М. - Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Э н г е л ь г а р д т В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; У о т-с о н Д ж., Молекулярная биология гена, пер. с англ., М., 1967; Ф н н е а н Д ж., Биологические ультраструктуры, пер. с англ., М., 1970; БендоллД ж., Мышцы, молекулы и движение, пер. с англ., М., 1970; И ч а с М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; С п и р н н А. С., Гавр и лова Л. П., Рибосома, 2 изд., М., 1971; Ф р е н-кель-Конрат X., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; X а р р и с Г., Основы биохимической генетики человека) пер. с англ., М., 1973.

В. А. Энгельгардт.

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА

, раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетич. информации, а также способа её хранения.

М. г. выделилась в самостоят, направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физич. и химич. методов (рентгеноструктурный анализ, хро-матография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отд. компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Большую роль в быстром развитии М. г. сыграло перенесение центра тяжести генетич. исследований с высших организмов (эука-риотов) - осн. объектов классич. генетики, на низшие (прокарйоты) - бактерии и мн. др. микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетич. проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетич. анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетич. явлений. Высказываемое иногда мнение о тождестве М. г. и генетики микроорганизмов ошибочно. М. г. изучает молекулярные основы генетич. процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.

За свою недолгую историю М. г. достигла значит, успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики.

Одно из главных достижений М. г.-выяснение химич. природы гена. Классич. генетика установила, что все наследственные потенции организмов (их генетическая информация) определяются дискретными единицами наследственности - генами, локализованными гл. обр. в хромосомах клеточного ядра, а также в нек-рых органеллах цитоплазмы (пластидах, митохондриях и др.). Однако методы классич. генетики не позволяли вскрыть химич. природу генов, что было отмечено ещё в 1928 выдающимся сов. биологом Н. К. Кольцовым, обосновавшим необходимость изучения механизма наследственности на молекулярном уровне. Первый успех в этом направлении был достигнут при изучении генетич. трансформации у бактерий. В 1944 амер. учёный О. Т. Эйвери с сотрудниками обнаружил, что наследственные признаки одного штамма пневмококков могут быть переданы другому, генетически отличному штамму путём введения в его клетки дезоксирибонуклеиновой кислоты (ДНК), выделенной из первого штамма. Впоследствии подобная генетич. трансформация с помощью ДНК была осуществлена у др. бактерий, а в последнее время - и у нек-рых многоклеточных организмов (цветковые растения, насекомые). Т. о., было показано, что гены состоят из ДНК. Этот вывод был подтверждён опытами с ДНК-содержащими вирусами: для размножения вируса достаточно введения молекул вирусной ДНК в клетку восприимчивого хозяина; все др. компоненты вируса (белки, ли-пиды) лишены инфекционных свойств и генетически инертны. Аналогичные опыты с вирусами, содержащими вместо ДНК рибонуклеиновую кислоту (РНК), показали, что у таких вирусов гены состоят из РНК. Выяснение генетич. роли ДНК и РНК послужило мощным стимулом для изучения нуклеиновых кислот биохимич., физико-химич. и рентгеноструктурными методами. В 1953 амер. учёный Дж. Уот-сон и англ, учёный Ф. Крик предложили модель структуры ДНК, предположив, что её гигантские молекулы представляют собой двойную спираль, состоящую из пары нитей, образованных нуклеоти-дами, расположенными апериодически, но в определённой последовательности. Каждый нуклеотид одной нити спарен с противолежащим нуклеотидом второй нити по правилу комплементарности. Многочисл. экспериментальные данные подтвердили гипотезу Уотсона и Крика. Несколько позже было установлено, что аналогичной структурой обладают молекулы разных РНК, только они большей частью состоят из одной полинуклеотид-ной нити. Дальнейшие работы, в к-рых химич. и физико-химич. методы сочетались с точными генетич. методами (использование разнообразных мутантов, явлений трансдукции, трансформации и т. д.), показали, что разные гены различаются как числом входящих в них пар нуклеотидов (от неск. десятков до полутора тысяч и более), так и строго определённой для каждого гена последовательностью нуклеотидов, в к-рой закодирована генетич. информация. (Принципиально сходную химич. структуру имеют и гены, состоящие из РНК,- у вирусов РНК-типа.)

Классич. генетика рассматривала ген как дискретную и неделимую единицу наследственности. Важное значение в пересмотре этой концепции имели работы сов. генетика А. С. Серебровского и его учеников, в 1930-х гг. впервые указавших на возможность делимости гена. Однако разрешающая способность методов клас-сич. генетики была недостаточной для изучения тонкого строения гена. Только с развитием М. г. удалось в 50-60-х гг. решить эту проблему. Мн. работами, проведёнными сначала на бактериях и вирусах, а затем и на многоклеточных организмах, было выяснено, что ген обладает сложным строением: он состоит из десятков или сотен участков - сайтов, способных независимо мутировать и ре-комбинировать (см. Мутации, Рекомбинация). Пределом дробим ости гена, а следовательно, и минимальным размером сайта является одна пара нуклеотидов (у вирусов, к-рые содержат одну нить РНК,- один нуклеотид). Установление тонкого строения генов позволило значительно углубить представление о механизме генетич. рекомбинации и закономерностях возникновения генных мутаций, оно способствовало также выяснению механизма функционирования генов. Данные о химич. природе и тонком строении генов позволили разработать методы их выделения. Впервые это было выполнено в 1969 амер. учёным Дж. Бэк-витом с сотрудниками для одного из генов кишечной палочки. Затем то же удалось осуществить у нек-рых высших организмов (земноводных). Ещё более значит, успех М. г. - первый химич. синтез гена (кодирующего аланиновую транспортную РНК дрожжей), осуществлённый X. Корана в 1968. Работы в этом направлении ведутся в ряде лабораторий мира. Для внеклеточного синтеза более крупных генов успешно применены новейшие биохимич. методы, основанные на явлении т. н. обратной транскрипции (см. ниже). Используя эти методы, С. Спигелмен, Д. Балтимор, П. Ледер и их сотрудники (США) далеко продвинулись по пути искусств, синтеза генов, определяющих структуру белка в молекулах гемоглобина у кролика и человека. Такие же работы проведены в последнее время и в ряде др. лабораторий, в т. ч. и в СССР.

Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетич. информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отд. гена требует ещё огромной работы.

Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК -их репликации. Этот процесс лежит в основе передачи генетич. информации от клетки к клетке и от поколения к поколению, т. е. определяет относит, постоянство генов. Изучение репликации ДНК привело к важному выводу о матричном характере биосинтеза ДНК: для его осуществления необходимо наличие готовой молекулы ДНК, на к-рой, как на шаблоне (матрице), синтезируются новые молекулы ДНК. При этом двойная спираль ДНК раскручивается, и на каждой её нити синтезируется новая, комплементарная ей нить, так что дочерние молекулы ДНК состоят из одной старой и одной новой нити (полуконсервативный тип репликации). Выделен белок, вызывающий раскручивание двойной спирали ДНК, а также ферменты, осуществляющие биосинтез нуклеотидов и их соединение ("сшивание") друг с другом. Несомненно, что в клетке имеются механизмы, регулирующие синтез ДНК. Пути такой регуляции ещё во многом неясны, но очевидно, что она в большой степени определяется генетич. факторами.

М. г. достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классич. генетикой,-каким образом ген определяет признак, или как происходит реализация генетич. информации. Предпосылкой послужило сформулированное ещё в 1941 Дж. Бидлом и Э. Тейтемом положение "один ген - один фермент". Это положение позволило поставить вопрос в следующем виде: как гены, т. е., по сути дела, участки молекулы ДНК, определяют химич. структуру и свойства белков, спе-цифич. для данного организма? Раскрытие химич. структуры ДНК и белка дало возможность сопоставить эти два типа биополимеров, что привело к концепции генетического кода, согласно к-рой порядок чередования 4 сортов нуклеотидов в ДНК определяет порядок чередования 20 сортов аминокислот в белковой молекуле. От последовательности расположения аминокислот в белковой молекуле (её первичной структуры)зависят все её свойства. Расшифровка принципов, на к-рых основан генетич. код, была осуществлена в 1962 Ф. Криком с сотрудниками в генетич. опытах с мутантами одного бактериального вируса. Оказалось, что каждая тройка нуклеотидов в цепи ДНК (триплет, кодон) определяет, какая именно из 20 аминокислот займёт данное место в полипептидной цепи синтезируемого белка, т. е. каждый триплет кодирует определённую аминокислоту. Последующие работы позволили полностью рас- шифровать генетич. код и установить нуклеотидный состав всех триплетов, кодирующих аминокислоты, а также состав инициирующего кодона, определяющего начало синтеза данной полипептидной цепи, и трёх терминирующих кодо-нов, определяющих конец синтеза. Было найдено, что генетич. код универсален для всего живого, т. е. что он один и тот же для любого организма, начиная от вирусов и кончая высшими животными и человеком. Участок молекулы ДНК, составляющий один ген, определяет, как правило, последовательность аминокислот в молекуле одного белка (или в одной полипептидной цепи, если данный белок состоит из неск. таких цепей).

Расшифровка генетич. кода сыграла выдающуюся роль в выяснении механизма биосинтеза белка - процесса, включающего перенос заключённой в ДНК генетич. информации на молекулы т. н. информационной, или матричной, РНК (и-РНК). Этот процесс, сущность к-рого составляет синтез и-РНК на матрице ДНК, получил название транскрипции. Информационная РНК связывается затем с особыми клеточными структурами - рибосомами, на к-рых и осуществляется синтез полипептидной цепи в соответствии с информацией, записанной в молекуле и-РНК. Этот процесс синтеза полипептидных цепей при посредстве и-РНК назван трансляцией.

Т. о., передача генетич. информации происходит по схеме: ДНК -> РНК -> белок. Это осн. положение (догма), правильность которого установлена мн. исследованиями на различных организмах, получило в 1970 важное дополнение. Американские учёные X. Темин и Д. Балтимор обнаружили, что при репродукции некоторых РНК-содержащих вирусов, вызывающих опухоли у животных, генетическая информация передаётся от РНК вируса к ДНК. Подобная обратная транскрипция осуществляется особыми ферментами, содержащимися в этих вирусах. Явление обратной транскрипции было обнаружено также в нек-рых здоровых клетках животных и человека. Полагают, что обратная транскрипция играет существенную роль в возникновении по крайней мере нек-рых форм злокачественных опухолей и лейкозов, а, возможно, также в процессах дифференцировки при нормальном развитии организмов. Следует подчеркнуть, что открытие обратной транскрипции не противоречит осн. положению М. г. о том, что генетич. информация передаётся от нуклеиновых к-т к белкам, но не может передаваться от белка к нуклеиновым к-там.

Замечат. достижение М. г.- раскрытие генетич. механизмов регуляции синтеза белков в бактериальной клетке. Как показали в 1961 франц. учёные Ф. Жакоб и Ж. Моно, биосинтез белка в бактерии находится под двойным генетич. контролем. С одной стороны, молекулярная структура каждого белка детерминируется соответствующим структурным геном, с другой - возможность синтеза этого белка определяется особым геном-регулятором, который кодирует спец. регуляторный белок, способный связываться со специфическим участком ДНК - т. н. оператором - и при этом "включать" или "выключать" функционирование структурных генов, управляемых этим оператором. Система из одного или неск. структурных генов и их оператора составляет т. н. оперон. Способность регуляторных белков связываться с оператором зависит от взаимодействующих с этими белками низкомолекулярных соединений - эффекторов. Эффекторы поступают в клетку извне или синтезируются ею и служат сигналами о необходимости синтеза этой клеткой тех или иных белков или прекращения их синтеза. Регуляторные белки бывают двух типов: белки-репрессоры, к-рые, связываясь с оператором, блокируют синтез белка (негативная регуляция), и белки-активаторы, к-рые, связываясь с оператором, индуцируют синтез белка (позитивная регуляция). При негативной регуляции в одних случаях репрессор до взаимодействия с эффектором находится в активной форме и, связываясь с оператором, препятствует транскрипции структурных генов оперона (а следовательно, и синтезу соответствующих белков). Эффектор переводит репрессор в неактивную форму, оператор освобождается и транскрипция структурных генов (а отсюда и синтез кодируемых ими белков) становится возможной. В др. случаях взаимодействие репрессора с эффектором переводит репрессор в активную форму, в к-рой он способен связаться с операт

Смотреть больше слов в «Большой советской энциклопедии»

МОЛЕКУЛЯРНАЯ ДИСТИЛЛЯЦИЯ →← МОЛЕКУЛА

Смотреть что такое МОЛЕКУЛЯРНАЯ БИОЛОГИЯ в других словарях:

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

        наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающем... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

, изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к-т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также ... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования ... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯдетальное изучение живых клеток и их составных частей (органелл), прослеживающее роль отдельных идентифицируемых соединений в функционировании этих структур. К сфере молекулярной биологии относится исследование всех связанных с жизнью процессов, таких, как питание и выделение, дыхание, секреция, рост, репродукция, старение и смерть. Важнейшее достижение молекулярной биологии - расшифровка генетического кода и выяснение механизма использования клеткой информации, необходимой, например, для синтеза ферментов. Молекулярнобиологические исследования способствуют и более полному пониманию других процессов жизнедеятельности - фотосинтеза, клеточного дыхания и мышечной активности.В молекулярной биологии предпочитают работать с относительно простыми системами, такими, как одноклеточные организмы (бактерии, некоторые водоросли), в которых число компонентов сравнительно невелико, а значит, и различить их легче. Но и при этом требуются весьма изощренные методы для того, чтобы точно локализовать отдельные вещества и отличить их от всех других.На основе физико-химических подходов и инструментария разработаны сложные, чувствительные приборы и методы, приспособленные для работы с органическими соединениями живых систем. Метод радиоавтографии основан на включении в определенные вещества радиоактивных атомов, т.н. "радиоактивной метки", которая позволяет проследить - по испускаемому излучению - химические превращения этих веществ. При изучении низкомолекулярных веществ применяют методы, позволяющие объединить малые молекулы вещества в т.н. макромолекулы, достаточно крупные для того, чтобы их можно было наблюдать при большом увеличении трансмиссионного электронного микроскопа. По дифрации рентгеновских лучей определяют общую форму макромолекул, как это было сделано, например, с дезоксирибонуклеиновой кислотой (ДНК). Для разделения смеси веществ, различающихся по размерам и химическому составу, используют различия в скорости их передвижения в электрическом поле (метод электрофореза) или разную скорость диффузии в растворителе, протекающем через неподвижную фазу, например бумагу (метод хроматографии).С помощью соответствующих ферментов можно определить нуклеотидную последовательность генов, а по ней - аминокислотную последовательность синтезируемых белков. Если у животных разных видов близки нуклеотидные последовательности генов, кодирующих общие для них белки, например гемоглобин, можно заключить, что в прошлом эти животные имели общего предка. Если же различия в их генах велики, то ясно, что расхождение видов от общего предка произошло намного раньше. Такие молекулярно-биологические исследования открыли новый подход к изучению эволюции организмов.Важный вклад в медицину должна внести идентификация вирусов по их составу. С ее помощью можно, например, установить, что вирус, вызывающий ту или иную болезнь у человека, гнездится естественным образом в каком-нибудь диком животном, от которого и передается человеку болезнь. Если у животных, которые служат в природе резервуаром данного вируса, симптомы болезни не обнаруживаются, то, видимо, здесь действует какой-то механизм иммунитета, и тогда возникает новая задача - изучить этот механизм, чтобы попытаться включить его в иммунную систему человека.Областью молекулярной биологии, вызывающей большие споры и часто неприятие, является генная инженерия, или технология рекомбинантных ДНК, суть которой в том, что в организм растения или животного встраивают чужие гены, чтобы придать ему новые свойства или же компенсировать какие-нибудь наследственные дефекты. См. также КЛЕТКА; ЦИТОЛОГИЯ; ФЕРМЕНТЫ; ГЕННАЯ ИНЖЕНЕРИЯ; МЕТАБОЛИЗМ; НУКЛЕИНОВЫЕ КИСЛОТЫ; ДЫХАНИЕ.... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

Термин молекулярная биология Термин на английском molecular biology Синонимы Аббревиатуры Связанные термины генная инженерия Определение наука... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

молекулярная биология раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой м... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

молекуля́рная биоло́гия, комплексная наука, изучающая биологические объекты и явления на молекулярном уровне. Возникла в середины XX в. благодаря внедр... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Тесно связана с биохимией и биофизикой, а исторически также с генетикой и микробиологией. Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модель двойной спирали ДНК. В СССР молекулярная биология сформировалась главным образом благодаря трудам научных школ А. Н. Белозерского и В. А. Энгельгардта. Часто молекулярную биологию, включающую молекулярную генетику, объединяют с биохимией и биофизикой в физико-химическую биологию.<br><br><br>... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ биология - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Тесно связана с биохимией и биофизикой, а исторически также с генетикой и микробиологией. Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модель двойной спирали ДНК. В СССР молекулярная биология сформировалась главным образом благодаря трудам научных школ А. Н. Белозерского и В. А. Энгельгардта. Часто молекулярную биологию, включающую молекулярную генетику, объединяют с биохимией и биофизикой в физико-химическую биологию.<br>... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Тесно связана с биохимией и биофизикой, а исторически также с генетикой и микробиологией. Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модель двойной спирали ДНК. В СССР молекулярная биология сформировалась главным образом благодаря трудам научных школ А. Н. Белозерского и В. А. Энгельгардта. Часто молекулярную биологию, включающую молекулярную генетику, объединяют с биохимией и биофизикой в физико-химическую биологию.... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ , исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Тесно связана с биохимией и биофизикой, а исторически также с генетикой и микробиологией. Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модель двойной спирали ДНК. В СССР молекулярная биология сформировалась главным образом благодаря трудам научных школ А. Н. Белозерского и В. А. Энгельгардта. Часто молекулярную биологию, включающую молекулярную генетику, объединяют с биохимией и биофизикой в физико-химическую биологию.... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

- исследует основные свойства и проявления жизни намолекулярном уровне. Выясняет, каким образом и в какой мере рост иразвитие организмов, хранение и передача наследственной информации,превращение энергии в живых клетках и др. явления обусловлены структурой исвойствами биологически важных макромолекул (главным образом белков инуклеиновых кислот). Тесно связана с биохимией и биофизикой, а историческитакже с генетикой и микробиологией. Возникновение молекулярной биологииобычно относят к 1953, когда Дж. Уотсон и Ф. Крик предложили модельдвойной спирали ДНК. В СССР молекулярная биология сформировалась главнымобразом благодаря трудам научных школ А. Н. Белозерского и В. А.Энгельгардта. Часто молекулярную биологию, включающую молекулярнуюгенетику, объединяют с биохимией и биофизикой в физико-химическую биологию.... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

исследует осн. свойства и проявления жизни на мол. уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача насле... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

molecular biology - молекулярная биология.Hаука о свойствах и проявлениях жизни на молекулярном уровне; становление М.б. приурочено к 50-м гг. XX в.; ... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон (США) и Ф. Крик (Великобритания) предложили модель двойной спирали дезоксирибонуклеиновой кислоты(ДНК). <br>... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления обусловлены структурой и свойствами биологически важных макромолекул (главным образом белков и нуклеиновых кислот). Возникновение молекулярной биологии обычно относят к 1953, когда Дж. Уотсон (США) и Ф. Крик (Великобритания) предложили модель двойной спирали дезоксирибонуклеиновой кислоты(ДНК).... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относ... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

(лат. moles масса, с уменьшительным суффиксом –cula; биология) – отрасль биологии, имеющая целью познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемуся к молекулярному.... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

— наука, изучающая строение и биологические функции молекул органических веществ, входящих в состав живых организмов. М. б. изучает молекулярные механизмы свойств и функции организмов методами физики и химии. <br>... смотреть

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

molecular biology, new biology

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

молекулалық биология

T: 230