РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, создающий необходимую для движения силу тяги путём преобразования исхоДной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, к-рая превращается в кинетич. энергию реактивной струи; рабочее тело, к-рое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. - преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащённого Р. д. (хим. горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (напр., воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В совр. Р. д. в качестве первичной чаще всего используется хим. энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания хим. топлива. При работе Р. д. хим. энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механич. энергию поступат. движения реактивной струи и, следовательно, аппарата, на к-ром установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 осн. класса- воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело к-рых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет осн. массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих осн. типов.

Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели-пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боеВыс. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул осн. положения теории жидкостных ракетных двигателей и предложил осн. элементы устройства РД на жидком топливе. Первые сов. жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском з-де в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечеств. война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретич. работы рус. учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды франц. учёного Р. Эно-Пельтри, нем. учёного Г. Оберта. Важным вкладом в создание ВРД была работа сов. учёного Б. С. Стечкина -"Теория воздушно-реактивного двигателя", опубликованная в 1929.

Р. д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р. д. используются на летательных аппаратах различных типов. Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство воен. и гражд. самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также па самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космич. летательных аппаратов и космич. аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах воен. назначения, а также на ракетах-носителях и космич. летательных аппаратах. Небольшие Твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космич. летат. аппаратах.

Осн. характеристики Р. д.: реактивная тяга, удельный импульс - отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика-удельный расход топлива (кол-во топлива, расходуемого за 1 сек на 1 н развиваемой Р. д. тяги), удельная масса двигателя (масса Р. д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для мн. типов Р. д. важными характеристиками являются габариты и ресурс.

Тяга - сила, с к-рой Р. д. воздействует на аппарат, оснащённый этим Р. д., -определяется по формуле

где т - массовый расход (расход массы) рабочего тела за 1 сек; Wс - скорость рабочего тела в сечении сопла; Fс- площадь выходного сечения сопла; рс - давление газов в сечении сопла; рn - давление окружающей среды (обычно атм. давление). Как видно из формулы, тяга Р. д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащённого Р. д., над ур. м., если речь идёт о полёте в атмосфере Земли. Удельный импульс Р. д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом темп-ры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Тяга существующих Р. д. колеблется в очень широких пределах - от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются гл. обр. в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление к-рой приходилось бы преодолевать, они могут использоваться и для разгона. РД с макс. тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космич. скорости. Такие двигатели потребляют очень большое кол-во топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Макс. тяга ВРД достигает 28 тс (1974). Эти Р. д., использующие в качестве осн. компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение мн. часов, что делает их удобными для использования в авиации. Историю и перспективы развития отд. видов Р. д. и лит. см. в статьях об этих двигателях.

Л. А, Гилъберг.




Смотреть больше слов в «Большой советской энциклопедии»

РЕАКТИВНЫЙ ИНСТИТУТ →← РЕАКТИВНЫЕ СОСТОЯНИЯ

Смотреть что такое РЕАКТИВНЫЙ ДВИГАТЕЛЬ в других словарях:

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

        двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего ... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов. Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй. Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело. Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет. Первый класс – воздушно?реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух. В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата. Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа. Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые. Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер?народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов. H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880?е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя. Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы. В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно?ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов. Особенность жидкостно?реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы. Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м. Систематические экспериментальные работы над этими двигателями начались в 30?х годах XX века. Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива. Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана. В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР?1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР?2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана. В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе. Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей. В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др. Первый полет на самолете?ракетоплане с жидкостно?реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно?ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи. В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно?реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте. Кроме того, ЖРД применялись на немецких ракетах Фау?2, созданных под руководством В. фон Брауна. В 1950?е годы жидкостно?ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях. ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы). Идея воздушно?реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно?реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха. В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно?реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно?реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км. В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно?реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно?реактивные двигатели конструкции Э. Зенгера. Воздушно?реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло. Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно?реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно?реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе. Большее развитие получила другая группа воздушно?реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом. В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта. В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло. В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война. В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете?истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги. В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива. Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты. В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей. Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью. В 1920–1930?е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии. Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет?носителей, стартовые двигатели для самолетов с прямоточными воздушно?реактивными двигателями и тормозные двигатели космических аппаратов. Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита. Зажигание топлива производится воспламенительным устройством. Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости. Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п. Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

реакти́вный дви́гатель двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

 1Классификация реактивных двигателейДвигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энерг... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Реакти́вный дви́гатель, двигатель прямой реакции, — условное наименование большого класса двигателей для летательных аппаратов различного назначения. В... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направ... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Реактивный двигатель двигатель, преобразующий какой-либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создае... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

двигатель прямой реакции, двигатель, создающий реакт. тягу в рез-те истечения из него реакт. струи. В отличие от двигателей др. типов в Р.д. отсутствуе... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

двигатель. создающий реактивную тягу в результате истечения из него рабочего тела. Для преобразования и разгона рабочего тела могут использоваться хим.... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

преобразует какой-либо вид первичной энергии в кинетическую энергию реактивной струн, создающей реактивную тягу. Сила тяги приложена непосредственно к ... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются на движущемся объекте) и воздушно-реактивные двигатели (один из компонентов рабочего тела - окружающий атмосферный воздух). <br>... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются на движущемся объекте) и воздушно-реактивные двигатели (один из компонентов рабочего тела - окружающий атмосферный воздух).... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

реактивный двигательמְנוֹעַ סִילוֹן ז'* * *סילון

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой реакции), двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно-реактивные и ракетные двигатели.<br><br><br>... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ двигатель (двигатель прямой реакции) - двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно-реактивные и ракетные двигатели.<br>... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

- (двигатель прямой реакции) - двигатель, тяга которогосоздается реакцией (отдачей) вытекающего из него рабочего тела.Подразделяются на воздушно-реактивные и ракетные двигатели.... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

1) &LT;astr.&GT; jet2) jet machine3) reaction-propulsion unit

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Düsentriebwerk, Düsenmotor, Rückstoßtriebwerk, Strahlantrieb, Strahlantriebswerk, Strahltriebwerk

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

motore a reazione {a getto}, reattore m

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

jet engine, jet* * *reaction engine

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

motor reactivo, motor a (de) reacción, motor de propulsión a chorro

РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ДВИГАТЕЛЬ ПРЯМОЙ РЕАКЦИИ)

РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой реакции), двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно-реактивные и ракетные двигатели.... смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ДВИГАТЕЛЬ ПРЯМОЙ РЕАКЦИИ)

РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой реакции) , двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно-реактивные и ракетные двигатели.... смотреть

T: 147