РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯ (от радио... и лат. locatio - размещение, расположение), область науки и техники, предметом к-рой является наблюдение радиотехнич. методами (радиолокационное наблюдение) различных объектов (целей) - их обнаружение, распознавание, измерение их координат (определение местоположения) и производных координат и определение др. характеристик. Под Р. понимают также сам процесс радиолокац. наблюдения (локации) объектов. При наличии нескольких объектов Р. должна обеспечивать требуемое их разрешение (раздельное наблюдение). Задачи Р. решаются при помощи отд. радиолокационных станций (РЛС) и сложных радиолокац. систем. С Р. тесно связана радионавигация; часто их методы и аппаратура практически не различаются. Р.- одно из важнейших направлений совр. радиоэлектроники.

Для радиолокац. наблюдения используют: эхо-сигналы, образующиеся в результате отражения радиоволн от объекта, облучённого РЛС (т. н. Р. с зондирующим излучением); сигналы РЛС, переизлучаемые ретранслирующим устройством, находящимся на объекте, местоположение к-рого определяется (Р. с активным ответом); собств. радиоизлучение объекта - излучение радиоустройств, находящихся на объекте, или тепловое излучение самого объекта, определяющееся его темп-рой (пассивная радиолокация ).

В Р. измеряют расстояние до объекта (дальнометрия, или дистанциометрия), направление прихода сигналов (пеленгация), радиальную и угловую скорости движения объекта и т. д. Радиолокац. наблюдение объектов позволяет также выявлять их мн. характерные особенности, напр. определять параметры ледового покрова водной поверхности, влагосодержание атмосферы, размеры и конфигурацию объекта и т. п. Данные измерений могут быть дискретными (вырабатываемыми через определённые интервалы времени) или непрерывными. Объекты могут быть одиночными или множественными либо представлять собой сплошные образования. Возможно сложное (комбинированное) наблюдение, напр. радиолокац. обзор пространства в нек-ром секторе, позволяющий производить поиск и обнаружение новых объектов в этом секторе и одновременно непрерывно получать текущие координаты уже обнаруженных объектов.

В основе наиболее распространённого вида Р.- Р. с зондирующим излучением - лежит явление отражения радиоволн. Простейшей характеристикой отражающих свойств объекта (в направлении на приёмную антенну РЛС при заданном направлении поля зондирующего излучения) является т. н. эффективная площадь рассеяния (ЭПР) объекта а, позволяющая определить плотность потока мощности поля у приёмной антенны РЛС П2 через плотность потока мощности излучения у объекта П1 по формуле

где R - расстояние от объекта до РЛС. По характеру отражения или излучения радиоволн радиолокац. объекты принято разделять прежде всего на сосредоточенные (под к-рыми понимают одиночные объекты с размерами, малыми по сравнению с размерами объёма, разрешаемого РЛС) и распределённые. Распределённые объекты, в свою очередь, могут быть поверхностными (напр., земная поверхность с пашней, кустарником, снегом и т. д., поверхность моря или Луны и т. д.) и объёмными (напр., всевозможные неоднородности в атмосфере - облака, дождь, снег, искусств. дипольные помехи и т. д.). Гладкие поверхности, у к-рых размеры неровностей составляют незначит. долю от длины облучающей волны (напр., спокойная водная поверхность, бетонное полотно и т. д.), отражают зеркально, т. е. при отражении наблюдаются определённые фазовые соотношения между облучающей волной и отражённой. При неровностях, соизмеримых с длиной облучающей волны или больших её, имеет место диффузное отражение волн, т. е. сложение волн со случайными фазами, отражённых от разных элементов поверхности. В общем случае реальные поверхности создают отражённые волны, содержащие как зеркальную, так и диффузную компоненту. Сопоставляя размеры одиночного объекта не только с объёмом, разрешаемым РЛС, но и с длиной волны, излучаемой ею, различают 3 случая: размеры объекта во много раз больше длины волны (т. н. оптич. рассеяние - поверхностное и краевое), размеры объекта и длина волны близки друг к другу (резонансное рассеяние), длина волны намного превосходит размеры объекта (рэлеевское рассеяние) (см. также Отражение света, Рассеяние света). Эти случаи различаются не только по интенсивности отражения, но и по характеру зависимости отражённого сигнала от длины волны и поляризации зондирующего сигнала. Особый практич. интерес представляет случай большой величины отношения размеров объекта к длине волны, поскольку в Р. наибольшее применение имеют волны сантиметрового (СМ) диапазона, в к-ром у большинства объектов (самолёты, корабли, ракеты, космич. аппараты) размеры поверхностей и краёв во много раз превосходят длину волны. Для такого (оптич.) рассеяния характерны независимость ЭПР от поляризации зондирующего сигнала и возможность разделить большой объект на отдельные, практически самостоят. части. Как и в оптике, здесь большую роль играют "блестящие точки" (явление интенсивного отражения волн от выпуклых частей объекта), а также зеркально отражающие гладкие участки поверхности. Расчёт поверхностного рассеяния волн основан на применении оптич. методов (преим. на использовании принципа Гюйгенса - Кирхгофа, согласно к-рому отражённое поле находится суммированием полей отд. участков "освещённой" поверхности). При резонансном рассеянии величина ЭПР резко зависит от длины волны и имеет максимум (это явление используют для создания эффективных помех работе РЛС посредством сбрасывания с самолётов металлизированных лепт длиной, равной половине длины волны). В области рэлеевского рассеяния ЭПР объекта обратно пропорциональна четвёртой степени длины волны, прямо пропорциональна квадрату объёма объекта и не зависит от его формы. Такая зависимость объясняет выгоды применения в Р. сравнительно коротких волн (напр., волн СМ диапазона) для обнаружения мелких объектов (напр., снарядов, капель дождя и пр.).

Появление и развитие радиолокации. Явление отражения радиоволн наблюдал ещё Г. Герц в 1886-89. Влияние корабля, пересекающего трассу радиоволн, на силу сигнала зарегистрировал А. С. Попов в 1897. Впервые идея обнаружения корабля по отражённым от него радиоволнам была чётко сформулирована в авторской заявке нем. инж. К. Хюльсмайера (1904), содержавшей также подробное описание устройства для её реализации.

Интерференцию незатухающих радиоволн, приходящих к приёмнику по двум путям - от передатчика и, после отражения, от движущегося судна,- впервые наблюдали амер. инж. А. Тейлор и Л. Юнг в 1922, а интерференцию при отражении радиоволн от самолёта - амер. инж. Б. Тревор и П. Картер в 1932. В 1924 англ. учёный Э. Эплтон провёл измерения высоты слоя Кеннелли-Хевисайда (слой Е ионосферы) путём наблюдения чередующихся усилений и ослаблений сигнала, вызванных варьированием частоты колебаний в передатчике, приводящим (как и при движении отражающего объекта) к изменению разности фаз между колебаниями, пришедшими по двум путям. В 1925 англ. учёные Г. Брейт и М. Тьюв опубликовали результаты своей работы по определению высоты слоя Кеннелли-Хевисайда измерением времени запаздывания импульсного сигнала, отражённого от слоя, относительно сигнала, пришедшего вдоль поверхности Земли.

В СССР работы по Р. были развёрнуты с 1933 по инициативе М. М. Лобанова, под рук. Ю. К. Коровина и П. К. Ощенкова. Первые практически использовавшиеся РЛС, действие к-рых было основано на появлении биений при пересечении самолётом линии передатчик-приёмник, разработаны под рук. Д. С. Стогова в 1938. Импульсный метод Р. разработан в 1937 в Ленингр. физ.-технич. ин-те под рук. Ю. Б. Кобзарева.

Последующее развитие Р., её внедрение в различные виды вооружения и нар. х-во связаны с освоением диапазона СВЧ, совершенствованием методов Р., внедрением вычислит. техники и использованием достижений смежных наук. Особое значение имела разработка радиолокац. измерит. устройств для зенитной и корабельной артиллерии. Появление и применение (почти одновременно с Р.) противорадиолокац. средств - пассивных и активных помех, защитных покрытий и пр. (см. Радиоэлектронное противодействие), вызвали необходимость разработки спец. противопомеховых методов и устройств. Радиолокац. методами решаются разнообразные задачи нар. х-ва, связанные с навигацией (см. Навигация, Навигация воздушная), метеорологией (см. Радиолокация в метеорологии), аэрофотосъёмкой (см. Аэрометоды), разведкой полезных ископаемых и др.

Появление (в 50-60-х гг.) ракетной и космической техники усложнило и расширило задачи Р. Создание ракет и космических летательных аппаратов (КЛА) потребовало точного измерения траектории и параметров их движения с целью управления ими, прогнозирования траектории точной посадки КЛА на Землю и др. планеты, точной гсографич. привязки количеств. результатов науч. измерений, данных метеорологич. обстановки, фотоснимков и т. п. к координатам КЛА, измерения взаимного положения КЛА. Одно из достижений Р.- решение задачи поиска и сближения двух КЛА, включая их автоматич. стыковку. Для ряда космич. применений Р. характерна тесная связь радиолокац. систем с системами передачи информации (в области радиотелеметрии, космич. телевидения и радиосвязи) и передачи команд, а также с вычислит. устройствами автоматич. комплекса управления КЛА. Часто эти системы имеют общий канал связи (общие антенны, цепи передающих и приёмных устройств), а в ряде случаев работают с общим сигналом.

Важная область применения Р.- планетная радиолокация, позволившая путём приёма радиосигналов, отражённых от планет, с большой точностью измерить расстояние до них и тем самым снизить погрешность в определении осн. астрономической единицы, уточнить параметры орбит планет, определить (по расширению спектра отражённого радиосигнала) период вращения планет (в частности, Венеры) и осуществить радиолокац. наблюдение рельефа поверхности планет. В СССР Р. Венеры, Меркурия, Марса и Юпитера выполнил в 1961-63 коллектив учёных во главе с В. А. Котелъниковым. См. также Радиолокационная астрономия.

При создании систем противоракетной обороны (ПРО) Р. должна решать сложные задачи, связанные с уничтожением ракет противника, в т. ч. с обнаружением и сопровождением ракет и наведением на них противоракет.

Основные принципы и методы радиолокации. Среди многочисл. принципов и методов Р. следует выделить наиболее важные, связанные с дальностью действия РЛС, измерением дальности, пеленгацией, защитой от пассивных помех (метод селекции движущихся целей), разрешением (метод бокового обзора).

Дальность действия РЛС, использующих отражённые сигналы (в отсутствии пассивных помех), при расположении передатчика и приёмника в одном месте определяется согласно осн. уравнению Р.:

где R - дальность действия; Р - ср. мощность зондирующих сигналов; Т - время, в течение к-poгo должно быть произведено обнаружение объекта или определение его местоположения; Sэ - эффективная площадь приёмной антенны; О - телесный угол, внутри к-рого ведётся наблюдение; Еп - энергия отражённого сигнала, к-рая необходима для обнаружения объекта с заданной достоверностью или определения его местоположения с заданной точностью; L - коэфф. потерь, обусловленных отличием реальной системы от идеальной.

Модификации этого уравнения связаны со специфич. условиями применения РЛС. Так, в наземных РЛС обнаружения возд. целей, ожидаемых на нек-рой высоте, для рационального использования мощности, излучаемой антенной, выбирают антенны с такой диаграммой направленности, чтобы во всём рабочем секторе обеспечивалось постоянство принимаемых сигналов независимо от дальности. Уравнения дальности действия РЛС, использующих ретранслированные (радиолокационным маяком) сигналы, составляются раздельно для 2 одинаковых расстояний: РЛС - маяк и маяк - РЛС; для каждого из них в зависимость дальности от энергетич. потенциала радиоканала (от мощности передатчика и чувствительности приёмника) входит R2, а не R4.

Дальность радиолокац. наблюдения в диапазоне СВЧ ограничивается кривизной земной поверхности и равна (в км)

где hi и h2 - высоты расположения объекта и РЛС над поверхностью Земли (в км). Дальность действия значительно возрастает в диапазоне декаметровых (коротких) волн - благодаря их распространению с последоват. отражениями от ионосферы (в среднем на высоте 300 км) и от поверхности Земли (см. Распространение радиоволн).

Открытие сов. учёным Н. И. Кабановым в 1947 явления дальнего рассеянного отражения от Земли декаметровых волн с их возвратом после отражения от ионосферы к источнику излучения привело к появлению принципиальной возможности создания т. н. ионосферной, или загоризонтной, Р. Загоризонтная Р. может осуществляться в основном по двум схемам: "на просвет" - с большим разнесением передатчика и приёмника и наблюдением объектов, находящихся между ними, и с возвратно-наклоииым зондированием - с приёмом сигналов, приходящих обратно к месту излучения (рис. 1).

Рис. 1. Схема загоризонтной радиолокации.

Измерение дальности по. отражённым сигналам обычно производится двумя способами. В основу первого (т. н. импульсного) способа положено излучение импульса и измерение времени запаздывания отражённого (или ретранслированного) объектом импульса относительно излучённого. Измерение облегчается, если отражённый сигнал не налагается на зондирующий, т. с. объект

Рис. 2. Схема измерения дальности импульсным методом: г - расстояние до цели.

находится на достаточном удалении от РЛС. В простейшем случае (рис. 2) для реализации этого способа применяются импульсный передатчик, приёмник (обычно супергетеродинного типа), задающий генератор-синхронизатор для запуска передатчика и задания шкалы времени, индикатор осциллографич. типа, по шкале к-рого можно отсчитывать дальность. Модификациями этой схемы являются многошкальные схемы, построенные по принципу нониуса, и следящие схемы - авто дальномеры.

В (основу второго способа положено наблюдение интерференции двух непрерывных волн, связанных с зондирующим излучением и отражением от объекта (или ретрансляцией). При реализации этого способа с зондирующими колебаниями, частота к-рых модулирована по линейному закону, в смеситель приёмного устройства (рис. 3, а, б) поступают колебания передатчика и сигнала, в результате чего имеют место биения между ними с частотой, пропорциональной измеряемой дальности. После детектирования, усиления и ограничения сигналы поступают на частотомер - счётчик частоты биений, шкала к-рого может быть проградуирована непосредственно в единицах дальности.

Рис. 3. Схема измерения дальности при непрерывных частотно-модулированных колебаниях (и) и кривые изменения во времени частоты зондирующего (fn) и отражённого (fo) колебаний (б): Тм - период модуляции; 2 г/с - временное запаздывание отражённого (желала (г - расстояние до цели, с - скорость света); t - время.

Радиальная скорость объекта, как правило, определяется с высокой точностью измерением частоты Доплера (см. Доплера эффект). При этом получение высокой разрешающей способности по скорости и высокой точности её измерения связано с применением сигналов большой длительности. Однако получение высокой разрешающей способности по дальности и высокой точности её измерения связано с применением широкополосных сигналов. Поэтому в Р. целесообразно применять сложные широкополосные сигналы с большой базой (с большим произведением ширины полосы спектра сигнала на его длительность). В случае простых сигналов (напр., одиночных монохроматичных импульсов) расширение спектра сигнала с целью получения лучшего разрешения по дальности сопровождалось бы ухудшением разрешения по скорости.

Пеленгация объектов может осуществляться при наблюдении из одного  пункта и при разнесённом приёме. В устройствах, расположенных в одном пункте, широкое применение получил метод пеленгации путём сравнения амплитуд сигналов - амплитудный метод, позволяющий получить высокую точность в сочетании с автоматич. слежением за целью по направлению и высоким отношением сигнал/шум. В простейшем случае достаточно сравнить амплитуды сигналов от объекта в двух положениях диаграммы направленности антенны (рис. 4), чтобы по знаку и величине разности этих сигналов (т. н. сигналу ошибки) судить о величине и знаке отклонения направления на объект от равносигналыюго (в к-ром сигнал ошибки равен нулю). После усиления сигнал ошибки подаётся в следящую систему, к-рая поворачивает антенну вслед за перемещением объекта ("следит" за равносигнальным направлением).

Рис. 4. Схема пеленгации по методу сравнения; ОБ - равносигнальное направление; ОА и ОВ - 2 положения максимума диаграммы направленности.

Существуют 2 варианта этого метода. В первом (более простом) необходим только один приёмный канал связи с одной антенной. Путём механиЧ. или электронной коммутации соответств. цепей получают два положения диаграммы направленности антенны и вырабатывают сигнал ошибки, к-рый управляет следящей системой. Образование сравниваемых сигналов реализуется последовательно (во времени). Во втором, паз. моноимпульсным методом (см. Моноимпульсная радиолокация), существуют 2 отд. приёмных канала связи с 2 антеннами и образование 1-го и 2-го сигналов происходит одновременно. Моноимпульсный метод свободен от ошибок, вызываемых флуктуациями сигналов (неизбежными в первом варианте).

В РЛС СМ диапазона волн первый вариант пеленгации реализуется при коническом сканировании, т. е. при вращении радиолуча, отклонённого относительно оси зеркала антенны (равносигналыюго направления). Синхронно с вращением луча вырабатываются 2 ортогональных напряжения, используемых для коммутации (на выходе тракта сигнала) фазовых детекторов с целью выделения сигнала ошибки. Во втором варианте одновременно существуют 4 радиолуча и 2 сигнала ошибки (от каждой из ортогональных пар лучей).

Кроме метода сравнения, также применяется амплитудный метод анализа огибающей принимаемых сигналов, позволяющий получить примерно такую же точность пеленгации при одновременном обзоре узким лучом сектора, в к-ром может находиться неск. целей.

Методы разнесённого приёма позволяют достигнуть высокой точности пеленгации путём измерения разности времени прихода сигналов. В зависимости от вида принимаемых сигналов такое измерение может производиться импульсным, корреляционным и фазовым способами.

Большое развитие в Р. получил фазовый способ пеленгации, основанный на измерении разности фаз высокочастотных колебаний, принимаемых антеннами, разнесёнными на определённое расстояние, наз. базой. Его достоинство - высокая точность, достигаемая гл. обр. необходимым увеличением базы. Метод свободен от погрешностей, вызываемых флуктуациями сигнала, общего (по амплитуде) для каналов фазовой системы. При преобразовании радиочастоты в промежуточную (более низкую) частоту в супергетеродинном радиоприёмнике разность фаз сохраняется неизменной, и её измерение с точностью ~1° не представляет технич. трудностей. При реализации этого метода важно сохранять идентичность и стабильность фазовых характеристик отд. приёмных каналов, пропускающих колебания, разность фаз к-рых измеряется, а также поддерживать постоянство частоты принимаемых волн и базы (или осуществлять спец. контроль за их изменением).

Фазовый метод весьма удобен и для точного измерения угловой скорости излучающего объекта. Применяя увеличенную базу, можно во много раз повысить чувствительность системы к изменению угловых координат, получая измеримые разности фаз колебаний при ничтожных угловых перемещениях объекта. Сложность измерения этими системами угловых координат и их производных обусловлена многоканальностью их структуры, жёсткими требованиями к фазовым характеристикам каналов, необходимостью использовать для автоматизации обработки данных ЦВМ с высокой производительностью.

Развитие фазовых методов измерения угловых координат и их производных в Р. было использовано в радиоастрономии, где получили применение интерферометры со сверхдлинной базой (порядка неск. тысяч км); с их помощью достигают углового разрешения порядка тысячной доли угловой секунды.

Большое значение в Р. имеет метод селекции движущихся целей -обнаружения отражённых целями сигналов, маскируемых радиоволнами, отражёнными от местных предметов - зданий, холмов, леса (при наблюдении низколетящих самолётов и снарядов или объектов, движущихся по земле), либо от волнующегося моря (при наблюдении перископов подводных лодок), либо от "облака" пассивных дипольных помех (при наблюдении возд. объектов) и т. д. При этом методе, наз. также когерентно-импульсным, фаза излучённых радиоволн запоминается с тем, чтобы при приёме сигнала, отражённого от объекта, по мере движения объекта можно было фиксировать изменение разности фаз между принятым и посланным сигналами; для неподвижного или малоподвижного фона помех изменения разности фаз в соседних периодах повторений импульсов близки к пулю, и при помощи устройств компенсации можно эти сигналы подавить, пропустив на выход РЛС только сигналы от движущихся объектов. Известны 2 способа реализации такого метода: с передатчиком (напр., на клистроне, рис. 5), фаза колебаний в к-ром может управляться, и с передатчиком (напр., на магнетроне, рис. 6), фаза колебаний к-рого от посылки к посылке импульсного сигнала случайна. В последнем случае фаза СВЧ колебаний магнетрона запоминается путём принудит. фазирования когерентного гетеродина приёмника при каждой посылке зондирующего сигнала.

Рис. 5. Блок-схема когерентной радиолокационной станции: FД, - частота Доплера движущейся цели; fо - несущая частота; fпр - промежуточная частота; УПЧ - усилитель промежуточной частоты; АН - антенна.

Рис. 6. Блок-схема псевдокогерентной радиолокационной станции с фазируемым когерентным гетеродином. Обозначения те же, что и на рис. 5.

Методы оптимальной обработки сигналов (в т. н. когерентных РЛС) позволили получать высокую угловую разрешающую способность у РЛС, движущихся относительно объектов (в т. ч. даже если размеры | антенны сравнительно невелики, т. е. при широком радиолуче). Так, для картографирования местности был разработан метод бокового обзора С синтезированным раскрывом антенны. В РЛС, использующих этот метод, антенна, вытянутая вдоль пути летат. аппарата (ЛА), принимает от каждой элементарной пло-

щадки местности сигналы, различающиеся временем запаздывания (в связи с перемещением ЛА) и частотой Доплера. Т. к. при оптимальной обработке сигналы запоминаются я суммируются с соответствующими фазовыми сдвигами, то можно получить эффект синфазного сложения сигналов, подобно тому как это происходило бы при неподвижной синфазной антенне с эквивалентным размером D вдоль линии пути, определяемым перемещением ЛА за время когерентного накопления сигнала Т:

D = v.T,

где v - скорость перемещения ЛА. Вследствие эффекта Доплера изменение частоты колебаний дельта f для элементов поверхности, разнесённых на ширину радиолуча 0 = Л/d (где X - длина волны, d - диаметр или сторона раскрыва антенны), равно

Следовательно, после оптимальной обработки сигнала длительность сжатого импульса t будет равна

что соответствует предельно достижимой продольной разрешающей способности вдоль линии пути, равной d = tv (или 1/2 d, если та же бортовая антенна используется не только для приёма, но и для облучения и обеспечивает т. о. удвоение фазовых сдвигов отражённых колебаний). Лит.: Теоретические основы радиолокации, под ред. В. Е. Дулевича, М., 1964; Современная радиолокация, пер. с англ., М., 1969; Теоретические основы радиолокации, под ред. Я. Д. Ширмана, М., 1970; Вопросы статистической теории радиолокации, под ред. Г. П. Тартаковского, т. 1 - 2, М., 1973 - 74.

А. Ф. Богомолов.




Смотреть больше слов в «Большой советской энциклопедии»

РАДИОЛОКАЦИЯ В МЕТЕОРОЛОГИИ →← РАДИОЛОКАЦИОННЫЙ МАЯК

Синонимы слова "РАДИОЛОКАЦИЯ":

Смотреть что такое РАДИОЛОКАЦИЯ в других словарях:

РАДИОЛОКАЦИЯ

(от Радио... и лат. locatio — размещение, расположение)        область науки и техники, предметом которой является наблюдение радиотехническими методам... смотреть

РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯ, -и, ж. Обнаружение, распознавание, определениеместонахождения различных объектов с помощью радиоволн. II прил.радиолокационный, -ая,-ое.... смотреть

РАДИОЛОКАЦИЯ

радиолокация ж. Обнаружение и определение местоположения различных объектов в пространстве по отраженным ими радиоволнам.

РАДИОЛОКАЦИЯ

радиолокация ж.radiolocation, radar

РАДИОЛОКАЦИЯ

радиолокация сущ.) Словарь русских синонимов. Контекст 5.0 — Информатик.2012. радиолокация сущ., кол-во синонимов: 1 • локализация (7) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: локализация... смотреть

РАДИОЛОКАЦИЯ

- обнаружение и определение местоположения разл. объектов с помощью радиотехн. устройств. Первые радиолокац. станции (РЛС), называемые также радио... смотреть

РАДИОЛОКАЦИЯ

Радиолокация (от лат. location – размещение, распределение) – это обнаружение, распознавание и определение пространственных координат различных объектов с помощью радиотехнических средств. В основе радиолокации лежит явление отражения радиоволн, которое наблюдал Г. Герц. Факт задержки радиоволн отдельными объектами установил еще в 1897 г. А. С. Попов, когда прохождение одного корабля между двумя другими кораблями нарушило радиотелеграфную связь между ними вследствие отражения радиоволн от металлического корпуса корабля. Первый радиолокатор (под названием телемобилоскоп) был описан в патентной заявке немецким инженером X. Хюльсмайером в 1904 году. В 1922 г. американские ученые А. Тейлор и Н. Юнг повторили опыты Попова. В 1925 г. в США были использованы посылки импульсов радиоволн для определения высоты ионизированного слоя. С середины 1920?х годов и позднее рядом ученых во многих странах, в том числе и советскими учеными (Б. А. Введенским и др.), велись исследования по изучению характера распространения ультракоротких волн над земной поверхностью. Появление в Первой мировой войне авиации и танков заставило искать пути раннего обнаружения техники противника. В 1920?е годы для этого использовались звукоуловители и теплоуловители. Но в условиях плохой погоды они не могли работать надежно. Поэтому в 1930?е годы на первый план вышла радиолокация – обнаружение объектов при помощи радиоволн, отражающихся от их поверхности. Для теоретической разработки основ радиолокационной техники важнейшее значение имели исследования советских ученых Л. И. Мандельштама и Н. Д. Папалекси по разработке радиотехнических методов измерения расстояний. В 1930 г. они впервые предложили радиоинтерференционный метод измерения расстояний. При помощи радиоволн, длина которых точно известна, определялось число волн, «укладывающихся» на данной дистанции (излучаемых в одном ее конце и отраженных от другого конца). Реализация идеи радиолокации потребовала решения ряда научно?технических проблем, в частности, было необходимо создать генераторы ультракоротких волн и чувствительные приемники очень слабых сигналов отраженных от объекта. В 1934–1935 годах английским ученым, исследователем ионосферы Р. Уотсоном?Уаттом, были начаты работы по обнаружению движущихся целей, а также определению расстояния до них методом «радиоэхо». Эти исследования привели к созданию первых в Англии образцов радиолокационной аппаратуры. С 1935–1936 гг. на восточном побережье Англии стали создаваться радиолокационные станции (РЛС), позволявшие засекать самолеты на расстоянии до 75 миль, в 1939 г. здесь уже была построена почти сплошная цепь радарных станций. Уже в начале Второй мировой войны в Англии появились первые наземные радиолокационные станции, предназначенные для обнаружения вражеских самолетов и кораблей. С этого времени радиолокационные установки стали играть все большую роль в военных операциях. Работы по созданию первых советских РЛС были начаты под руководством инженеров М. И. Куликова и Д. С. Стогова, они использовали непрерывное излучение радиоволн. Подобные системы радиолокации исследовались уже с 1932 г. по инициативе инженера П. К. Ощепкова, а первые макеты РЛС с непрерывным излучением были разработаны и испытаны в 1934–1936 гг. под руководством инженера Б. К. Шембеля. Действие первых практически использовавшихся советских РЛС было основано на появлении биений при пересечении линии передатчик – приемник. Первые станции появились в 1938 году. Впоследствии наибольшее распространение получили импульсные РЛС, которые в нашей стране были разработаны впервые в 1937 г. под руководством инженера Ю. Б. Кобзарева. В СССР первые РЛС были применены для прикрытия Ленинграда с воздуха во время советско?финской войны 1939–1940 годов. Принцип действия импульсной РЛС заключается в следующем. Радиолокационный передатчик посылает в пространство радиоволны, которые, отражаясь от какого?либо объекта, попадают в приемник РЛС. Зная скорость распространения радиоволн по интервалу времени между посылкой и возвращением радиосигнала можно определить расстояние до этого объекта. При этом направление на обнаруженный объект можно установить, применяя остронаправленные антенны. Для удобства отсчета моментов посылки и возвращения радиолокационных сигналов в импульсных РЛС эти сигналы формируются в виде кратковременных радиоимпульсов. Эти радиоимпульсы подобны радиотелеграфным точкам азбуки Морзе, но имеют длительность порядка нескольких микросекунд. Сейчас в радиолокации используются даже наносекундные радиоимпульсы. В качестве индикатора локационных импульсов на выходе РЛС используется электронно?лучевая трубка. В современных РЛС трубка дополняется специализированной ЭВМ, которая значительно расширяет круг задач, оперативно решаемых с помощью РЛС, и повышает точность определения координат объекта. Огромную роль сыграли радиолокаторы во время «битвы за Англию» в 1940 г. Сеть английских радиолокационных станций, расположенных по всему побережью Ла?Манша, засекала немецкие самолеты, бомбившие объекты на территории страны в основном ночью, наводила на них истребители. Немцы, стремясь воспрепятствовать бомбардировкам своих городов, также создали локаторы. Для борьбы с ними союзники применяли ложные цели, сбрасывая с самолетов миллионы кусочков алюминиевой фольги. Во время Второй мировой войны локаторы устанавливали на самолетах, выполнявших «слепое бомбометание», а также боровшихся с подводными лодками противника. Вследствие непригодности обычных радиоламп с электростатическим управлением для генерации и приема сантиметровых и миллиметровых волн появилась необходимость создания принципиально новых электронных приборов. К началу 40?х годов XX в. для генерирования больших мощностей был создан новый тип генератора сверхвысокочастотных колебаний сантиметрового диапазона, рассчитанный на импульсный режим работы – магнетрон, а также менее мощный генератор – клистрон. После 1945 г. для усиления сантиметровых волн начинают все больше применяться так называемые электронно?волновые приборы – лампы с бегущей волной. Радиолокация стимулировала развитие импульсной техники, освоение очень коротких радиоволн и специальных антенных устройств остронаправленного действия. Сначала в радиолокации использовались метровые и дециметровые волны, а затем стали переходить к сантиметровым волнам, которым соответствует спектр частот от 30 тыс. до 3 тыс. мегагерц. Малая длина этих волн, являющихся частью диапазона ультракоротких волн, позволила создать сравнительно небольшие по размерам радиолокационные антенны, имевшие ширину направленности в несколько градусов и даже долей градуса. Это позволило обеспечить большую помехоустойчивость станции. Для этого используются специальные антенны с параболическим рефлектором, а также рупорные, щелевые, линзовые антенны. После Второй мировой войны развитию радиолокации уделялось большое внимание. Это связано с появлением ядерного оружия, для доставки которого к цели применяются как самолеты, так и ракеты. Для защиты от атомного удара в СССР, США, Великобритания и других странах разворачивается мощная противовоздушная оборона. Ее важнейшей составной частью стали РЛС. Они обнаруживают цель и наводят на нее авиацию ПВО и зенитно?ракетные комплексы. Специальные типы радиолокационных станций стали применяться для перехвата самолетов противника, для управления огнем артиллерийских установок и т. д. Появляются радиолокаторы, предупреждающие экипаж самолета о приближении вражеских самолетов сзади или снизу (в так называемом «мертвом секторе»). Радиолокационные станции обнаружения для быстрого и точного опознавания кораблей или самолетов снабжались устройствами, работающими по принципу «запросчика» и «ответчика» (такой метод предполагает посылку «запросного» радиосигнала в направлении объекта и приема «ответного» сигнала, автоматически излучаемого передатчиком объекта). Вместе с тем начинает развиваться и «противорадиолокация» для обнаружения радиолокационных станций противника, для создания помех в их работе. Во время войны во Вьетнаме для борьбы с РЛС противника американские войска стали применять противолокаторную ракету «Шрайк», которая наводилась по лучу локатора и уничтожала станцию. В конце XX в. в США осуществляется программа «Стеле», в ходе которой создаются самолеты, невидимые для локаторов. Эти самолеты имеют специальную форму поверхности, рассчитанную на компьютере. Луч локатора, падающий на нее, рассеивается, и самолет становится невидимым для ПВО противника. Однако такая конструкция отрицательно сказывается на аэродинамике машины. Как показал опыт войн на Ближнем Востоке и в Югославии, объект, невидимый для современных РЛС, работающих в диапазоне миллиметровых волн, легко обнаруживается более старыми локаторами, работающими в диапазоне метровых волн. В России разрабатывается самолет нового поколения, на котором установлена противолокационная защита, не влияющая на летные характеристики машины. Принципы, на которых основана ее работа, пока не разглашаются. В военных целях созданы так называемые загоризонтные РЛС. Они применяются для наблюдения с расстояния в несколько тысяч километров с целью раннего обнаружения пусков баллистических ракет и определения их возможных траекторий, обнаружения ядерных взрывов, наблюдения за различными слоями атмосферы. Радиолокация с большим успехом используется в гражданской авиации. Она применяется для осуществления слепых полетов, слепой посадки на аэродром, для измерения расстояний до наземных ориентиров, управления движением самолета в районе аэропорта. Бортовые самолетные РЛС используются также для определения истинной (путевой) скорости полета, выявления грозовых фронтов и для получения на экране радиолокационного изображения земной поверхности при отсутствии ее видимости. Радиолокационные высотомеры, устанавливаемые на самолете, позволяют с большой точностью определить истинную высоту полета. В условиях арктических полетов специальные бортовые РЛС позволяют определять толщину льда, что необходимо для установления возможности посадки самолета на льдину. В морском и речном флоте радиолокация применяется для увеличения безопасности кораблевождения. Радиолокация широко используется в метеорологии. Объектами радиолокационного обнаружения могут быть облака, осадки, грозовые очаги и фронты. Методы радиолокации оказались чрезвычайно плодотворными для развития радиоастрономии. Ее интенсивное развитие началось после Второй мировой войны, хотя еще в довоенное время удалось зарегистрировать отражения радиоволн от Луны и обнаружить радиоизлучение Солнца. Уже в 1945–1946 гг. в США и Венгрии были проведены опыты радиолокации Луны. С помощью мощного передатчика на Луну был направлен сигнал радиолокатора, а приблизительно через 3 сек отраженный сигнал вернулся на Землю. Расстояние до Луны, измеренное методом «радиоэхо», согласуется с данными других способов измерений. Радиолокация планет позволила существенно уточнить их параметры (например расстояние от Земли и скорость вращения), состояние атмосферы и т. д. Такие исследования проводились в Советском Союзе под руководством академика В. А. Котельникова. В начале 60?х годов XX в. была произведена, в частности, радиолокация Венеры, Меркурия, Марса и Юпитера. С началом космической эры радиолокация применяется для слежения за искусственными спутниками Земли и измерения их траектории.... смотреть

РАДИОЛОКАЦИЯ

радиолока́ция область науки и техники, посвящённая наблюдению различных объектов, использующая свойства распространения радиоволн. Любой объект, отл... смотреть

РАДИОЛОКАЦИЯ

радиолока́ция (радио... + лат. locatio размещение, расположение) 1) наблюдение (обнаружение, распознавание, определение местоположения) различных объ... смотреть

РАДИОЛОКАЦИЯ

в с. х-ве, определение местоположения и скорости движения объектов с помощью радиоволн. Радиоволны, отражаемые от объекта, излучаются и принимаются антенной радиолокатора. Отражённые от объекта сигналы обрабатываются автоматич. вычислит, устройствами либо выводятся на электронно-лучевой индикатор для наблюдения и фотографирования. Движение электронного луча по экрану индикатора осуществляется синхронно с движением антенны радиолокатора, при этом на экране возникает радиолокац. картина окружающего пространства. Р. применяется, напр., для определения размеров грозовых облаков, расстояния до них и скорости их передвижения; при Р. с самолёта или спутника можно установить толщину снежного покрова, потому что сигналы, отражённые от поверхности снега и от поверхности почвы, имеют разл. задержку и интенсивность. В вегетац. период развития р-ний по радиолокац. картине могут быть с высокой точностью определены запасы влаги на полях. Поскольку отражающие свойства р-ний в течение вегетац. периода изменяются, то по радиолокационной картине можно судить об интенсивности роста с.-х. культур, прогнозировать урожайность. Р. применяется также для определения положения самолётов с.-х. авиации и мобильных радиоуправляемых с.-х. агрегатов. <br><b>Синонимы</b>: <div class="tags_list">локализация</div><br><br>... смотреть

РАДИОЛОКАЦИЯ

Радиолокация область науки и техники, предметом которой является наблюдение различных объектов (целей) радиотехническими методами их обнаружение, расп... смотреть

РАДИОЛОКАЦИЯ

Цикада Цик Цадик Рядок Ряд Роля Ролик Рол Рокада Рок Родиол Родилка Род Рия Рио Рико Рик Риал Риа Рая Рация Рацио Рао Рало Ракля Ракия Ракалия Рак Раия Радия Радиоцикл Радиолокация Радиола Радио Радикал Радиация Рада Орок Орляк Орлица Орлик Орка Орк Ория Ордика Ордалия Орда Орало Оля Окрол Околия Околица Око Оклад Ока Оидия Одр Одарка Ода Оао Лярд Ляд Лоция Лоро Лори Лорд Лор Локо Локация Лок Лодка Лицо Лирик Лира Ликод Лик Лидица Лидар Лида Лара Лакрица Лак Ладо Ладка Лада Лад Крица Крио Краля Корица Корд Кора Коляда Коля Колода Коло Кола Кол Коир Кодла Код Коалиция Коала Клод Клица Клир Клио Клара Клад Кира Кило Кил Карло Карлица Карла Карл Кария Кардия Кардио Карда Кара Калория Калия Кали Кал Каир Кадр Кадло Кадило Ирод Ирка Ирида Иракли Ирак Ираида Иол Илиодор Илиада Икра Икар Идол Идо Ида Дрок Драка Доярка Дояр Дорка Дора Доля Дол Док Дирак Диола Дикция Дико Даяк Дария Дари Дар Далия Дакрил Дакар Дак Аркадия Аркад Арка Арк Ария Арида Аралия Арак Аля Алик Алдар Акция Акрил Акрид Циклоида Акр Аки Акация Цикля Цирик Цирк Цокор Акарицид Ядро Яик Адорация Ялик Ада Ярд Ярица Ярка Ярко Ярл Яро Аида Аил Аир Акад Ядрица Цикл... смотреть

РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯ (от радио ... и лат. locatio - расположение), область науки и техники, предмет которой - наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их местонахождения и скорости и др.; сам процесс радиолокационного наблюдения, осуществляемый радиолокационными станциями (РЛС) и системами. В радиолокации с зондирующим излучением (наиболее распространена) для наблюдения используют радиосигналы, отраженные от объекта, облученного РЛС (эхо-сигналы); в радиолокации с активным ответом - сигналы РЛС, переизлученные активным ретранслятором, находящимся на объекте; в пассивной радиолокации - собственное радиоизлучение объекта (его радиоустройств или тепловое). Первые РЛС появились в 1936-38 (Великобритания, США, СССР). Методы и средства радиолокации применяют в военном деле (ПВО и мн. др.), морской, воздушной и космической навигации, метеорологии, астрономии (радиолокация планет), при разведке полезных ископаемых и т. д.<br><br><br>... смотреть

РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯ (от радио... и лат. locatio - расположение) - область науки и техники, предмет которой - наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их местонахождения и скорости и др.; сам процесс радиолокационного наблюдения, осуществляемый радиолокационными станциями (РЛС) и системами. В радиолокации с зондирующим излучением (наиболее распространена) для наблюдения используют радиосигналы, отраженные от объекта, облученного РЛС (эхо-сигналы); в радиолокации с активным ответом - сигналы РЛС, переизлученные активным ретранслятором, находящимся на объекте; в пассивной радиолокации - собственное радиоизлучение объекта (его радиоустройств или тепловое). Первые РЛС появились в 1936-38 (Великобритания, США, СССР). Методы и средства радиолокации применяют в военном деле (ПВО и мн. др.), морской, воздушной и космической навигации, метеорологии, астрономии (радиолокация планет), при разведке полезных ископаемых и т. д.<br>... смотреть

РАДИОЛОКАЦИЯ

- (от радио... и лат. locatio - расположение) - область науки итехники, предмет которой - наблюдение различных объектов (целей)радиотехническими методами: их обнаружение, распознавание, определение ихместонахождения и скорости и др.; сам процесс радиолокационногонаблюдения, осуществляемый радиолокационными станциями (РЛС) и системами.В радиолокации с зондирующим излучением (наиболее распространена) длянаблюдения используют радиосигналы, отраженные от объекта, облученного РЛС(эхо-сигналы); в радиолокации с активным ответом - сигналы РЛС,переизлученные активным ретранслятором, находящимся на объекте; впассивной радиолокации - собственное радиоизлучение объекта (егорадиоустройств или тепловое). Первые РЛС появились в 1936-38(Великобритания, США, СССР). Методы и средства радиолокации применяют ввоенном деле (ПВО и мн. др.), морской, воздушной и космической навигации,метеорологии, астрономии (радиолокация планет), при разведке полезныхископаемых и т. д.... смотреть

РАДИОЛОКАЦИЯ

(от радио... и лат. locatio -расположение), область науки и техники, предмет к-рой - наблюдение разл. объектов (целей) радиотехн. методами: их обнаруже... смотреть

РАДИОЛОКАЦИЯ

1) Орфографическая запись слова: радиолокация2) Ударение в слове: радиолок`ация3) Деление слова на слоги (перенос слова): радиолокация4) Фонетическая т... смотреть

РАДИОЛОКАЦИЯ

(от радио.., и лат. locatio - расположение) - область науки и техники, предметом к-рой является наблюдение радиолокац. (радиотехнич.) методами разл. об... смотреть

РАДИОЛОКАЦИЯ

(от радио... и латинского locatio - расположение), область науки и техники, предмет которой - наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, определение местоположения (координат), скорости и др.; сам процесс радиолокационного наблюдения, осуществляемый радиолокационными станциями. Основные методы радиолокации: активные, основанные на облучении объекта радиоволнами и приеме от него (рассеянных им) радиоволн; пассивные, основанные на приеме радиоволн, излучаемых самим объектом. Идея радиолокации возникла вместе с изобретением радио, широкое техническое развитие она получила лишь в конце 30-х гг. 20 в. Современная радиолокация применяется в военном деле, морской, воздушной, космической навигации, метеорологии и астрономии.... смотреть

РАДИОЛОКАЦИЯ

radar, radiolocation* * *радиолока́ция ж.(в широком смысле — работа с облучением и без облучения объекта в.ч. энергией) radiolocation; (работа только ... смотреть

РАДИОЛОКАЦИЯ

область науки и техники, предметом которой является наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, оп... смотреть

РАДИОЛОКАЦИЯ

радиолокация [радио... + лат. locatio размещение, расположение] - 1) наблюдение (обнаружение, распознавание, определение местоположения) различных объектов (целей) посредством направленного излучения и приема отраженных от объектов радиоволн сверхвысокой частоты (активнаяр.) или приема собственного радиоизлучения объектов (пассивная р.); область науки и техники, изучающая методы и создающая средства для такого наблюдения; 2) р. небесных тел солнечной системы - см. радиоастрономия. <br><br><br>... смотреть

РАДИОЛОКАЦИЯ

-и, ж. Обнаружение, распознавание различных объектов и определение их местоположения по характеру отражения радиоволн или их собственному радиоизлучен... смотреть

РАДИОЛОКАЦИЯ

корень - РАДИО; корень - ЛОК; суффикс - АЦИ; окончание - Я; Основа слова: РАДИОЛОКАЦИВычисленный способ образования слова: Суффиксальный∩ - РАДИО; ∩ - ... смотреть

РАДИОЛОКАЦИЯ

(от радио… и локация), наблюдение за различ. объектами посредством направленного излучения и приёма отражённых от них радиоволн (активная Р.) или приём... смотреть

РАДИОЛОКАЦИЯ

Ударение в слове: радиолок`ацияУдарение падает на букву: аБезударные гласные в слове: радиолок`ация

РАДИОЛОКАЦИЯ

ж.radar (RAdio Detection And Ranging;) radiolocation- активная импульсная радиолокация- астрономическая радиолокация- планетная радиолокация- радиолока... смотреть

РАДИОЛОКАЦИЯ

1) &LT;tech.&GT; radar2) radar-location3) radiolocation– вторичная радиолокация– первичная радиолокация– радиолокация вертикальная– радиолокация высотн... смотреть

РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯметод обнаружения и определения местонахождения объектов посредством радиоволн. Эти волны излучаются радиолокационной станцией, отражаются от объекта и возвращаются на станцию, которая анализирует их, чтобы точно определить место, где находится объект.См. также:РАДИОЛОКАЦИЯ: ПРИМЕНЕНИЯРАДИОЛОКАЦИЯ: АППАРАТУРА... смотреть

РАДИОЛОКАЦИЯ

ра́диолока́ция, ра́диолока́ции, ра́диолока́ции, ра́диолока́ций, ра́диолока́ции, ра́диолока́циям, ра́диолока́цию, ра́диолока́ции, ра́диолока́цией, ра́диолока́циею, ра́диолока́циями, ра́диолока́ции, ра́диолока́циях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: локализация... смотреть

РАДИОЛОКАЦИЯ

радиолокация - определение местонахождения внешнего объекта с помощью радиоволн.радиолокационный.радиолокатор. радар.радиопрожектор.радиопеленгатор.рад... смотреть

РАДИОЛОКАЦИЯ

ж. radiolocalizzazione f, radaristica f - вторичная радиолокация- импульсная радиолокация- первичная радиолокация

РАДИОЛОКАЦИЯ

астр., техн., физ. радіолока́ція - вторичная радиолокация - космическая радиолокация - метеорная радиолокация - моноимпульсная радиолокация - первичная радиолокация - противовоздушная радиолокация - радиолокация обнаружения Синонимы: локализация... смотреть

РАДИОЛОКАЦИЯ

Rzeczownik радиолокация f radiolokacja f

РАДИОЛОКАЦИЯ

радиолока/ция, -и Синонимы: локализация

РАДИОЛОКАЦИЯ

сущ. жен. рода, только ед. ч.спец.радіолокація

РАДИОЛОКАЦИЯ

ра`диолока'ция, ра`диолока'ции, ра`диолока'ции, ра`диолока'ций, ра`диолока'ции, ра`диолока'циям, ра`диолока'цию, ра`диолока'ции, ра`диолока'цией, ра`диолока'циею, ра`диолока'циями, ра`диолока'ции, ра`диолока'циях... смотреть

РАДИОЛОКАЦИЯ

жFunkmeßverfahren n; Radartechnik f (радиолокационная техника)Синонимы: локализация

РАДИОЛОКАЦИЯ

(1 ж), Р., Д., Пр. радиолока/цииСинонимы: локализация

РАДИОЛОКАЦИЯ

ж. radar m; détection f électromagnétique

РАДИОЛОКАЦИЯ

1. Радиоопределение, используемое для целей, отличных от целей радионавигации Употребляется в документе: МСЭ, 2007 год. Телекоммуникационный словарь.2013. Синонимы: локализация... смотреть

РАДИОЛОКАЦИЯ

радиолокация, радиолок′ация, -и, ж. Обнаружение, распознавание, определение местонахождения различных объектов с помощью радиоволн.прил. радиолокационн... смотреть

РАДИОЛОКАЦИЯ

f.radar, radar-locationСинонимы: локализация

РАДИОЛОКАЦИЯ

ж.radar m, radiolocalización f

РАДИОЛОКАЦИЯ

РАДИОЛОКАЦИЯ, -и, ж. Обнаружение, распознавание, определение местонахождения различных объектов с помощью радиоволн. || прилагательное радиолокационный, -ая,-ое.... смотреть

РАДИОЛОКАЦИЯ

жradar m, radiolocalização fСинонимы: локализация

РАДИОЛОКАЦИЯ

ж. радиолокация (алыс жердеги көрүнбөгөн нерселердин кайда экендигин, кайсы багытка карай бет алып бараткандыгын радио толкундары аркылуу билүү методу).... смотреть

РАДИОЛОКАЦИЯ

радиолокация ж Funk|meßverfahren n 1; Radartechnik f (радиолокационная техника)Синонимы: локализация

РАДИОЛОКАЦИЯ

Ж xüs. radiolokasiya (hər cür hava şəraitində radio dalğaları vasitəsilə təyyarələrin, gəmilərin, atəş obyektlərinin və s. yerini müəyyən etmə).

РАДИОЛОКАЦИЯ

ж.radar m; détection f électromagnétiqueСинонимы: локализация

РАДИОЛОКАЦИЯ

жradarla kestirmeСинонимы: локализация

РАДИОЛОКАЦИЯ

радиолок'ация, -иСинонимы: локализация

РАДИОЛОКАЦИЯ

радиолокация (радиотолқындарының түрлі объектілерден шағылысуы арқылы олардың кеңістіктегі тұрған орнын анықтау)

РАДИОЛОКАЦИЯ

радиолокацияСинонимы: локализация

РАДИОЛОКАЦИЯ

无线电定位 wúxiàndiàn dìngwèiСинонимы: локализация

РАДИОЛОКАЦИЯ

Начальная форма - Радиолокация, единственное число, женский род, именительный падеж, неодушевленное

РАДИОЛОКАЦИЯ

רדארСинонимы: локализация

РАДИОЛОКАЦИЯ

Funkmessung, Funkortung, Hochfrequenzortung, Radar, Rückstrahlortung

РАДИОЛОКАЦИЯ

ж. radiolocalizzazione, radaristica Итальяно-русский словарь.2003. Синонимы: локализация

РАДИОЛОКАЦИЯ

détection par radar

РАДИОЛОКАЦИЯ

радиолокация радиолок`ация, -и

РАДИОЛОКАЦИЯ

радио||локацияж τό σύστημα ραντάρ.

РАДИОЛОКАЦИЯ

radiolocalización, radiodetección

РАДИОЛОКАЦИЯ

радыёлакацыя, жен.

РАДИОЛОКАЦИЯ

radar, radiolocation

РАДИОЛОКАЦИЯ

{N} ռադիոլոկացիա

РАДИОЛОКАЦИЯ

Raadiolokatsioon

РАДИОЛОКАЦИЯ

радиолокация.

РАДИОЛОКАЦИЯ

радиолокация

РАДИОЛОКАЦИЯ

Радыёлакацыя

T: 215