СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ, физич. метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физич. основа С. а.- спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров (см. Спектры оптические). Атомный С. а. (АСА) определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный С. a. (MCA) - молекулярный состав веществ по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света,

Эмиссионный С. а. производят по спектрам испускания атомов, ионов и молекул, возбуждённым различными источниками электромагнитного излучения в диапазоне от СПЕКТРАЛЬНЫЙ АНАЛИЗ фото №1-излучения до микроволнового. Абсорбционный С. а. осуществляют по спектрам поглощения электромагнитного излучения анализируемыми объектами (атомами, молекулами, ионами вещества, находящегося в различных агрегатных состояниях).

Историческая справка. В основе АСА лежит индивидуальность спектров испускания и поглощения хим. элементов, установленная впервые Г. P. Кирхгофом и P. Бунзеном (1859-61). В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике. В 1861-1923 с помощью АСА было открыто 25 элементов. В 1932 спектральным методом был открыт дейтерий.

Высокая чувствительность и возможность определения MH. элементов в пробах малой массы сделали АСА эффективным методом качественного анализа элементного состава объектов. В 1926 нем. физик В. Герлах положил начало количественному С. а. Для развития С. а. и внедрения его на пром. предприятиях СССР большую роль сыграли Г. С. Ландсберг, С. Л. Мандельштам, А. К. Русанов

(Москва), A. H. Филиппов, В. К. Прокофьев (Ленинград) и др.

Атомный спектральный анализ (АСА)

Эмиссионный АСА состоит из следующих осн. процессов:

1) отбор представит, пробы, отражающей средний состав анализируемого материала или местное распределение определяемых элементов в материале;

2) введение пробы в источник излучения, в к-ром происходят испарение твёрдых и жидких проб, диссоциация соединений и возбуждение атомов и ионов;

3) преобразование их свечения в спектр и его регистрация (либо визуальное наблюдение) с помощью спектрального прибора‘,

4) расшифровка полученных спектров с помощью таблиц и атласов спектральных линий элементов.

На этой стадии заканчивается качественный АСА. Наиболее результативно использование чувствительных (т. н. "последних") линий, сохраняющихся в спектре при минимальной концентрации определяемого элемента. Спектрограммы просматривают на измерит, микроскопах, компараторах, спектропроекторах. Для качественного анализа достаточно установить наличие или отсутствие аналитич. линий определяемых элементов. По яркости линий при визуальном просмотре можно дать грубую оценку содержания тех или иных элементов в пробе.

Количественный АСА осуществляют сравнением интенсивностей двух спектральных линий в спектре пробы, одна из к-рых принадлежит определяемому элементу, а другая (линия сравнения) - осн. элементу пробы, концентрация к-рого известна, или специально вводимому в известной концентрации элементу ("внутреннему стандарту").

В основе количественного АСА лежит соотношение, связывающее концентрацию с определяемого элемента с отношением интенсивностей линии определяемой примеси (I1) и линии сравнения (I2):

I1/I2= ась

(постоянные а и b определяются опытным путём), или

Ig (I1/I2) = b lg с+ lg а. С помощью стандартных образцов (не менее 3) можно построить график зависимости Ig(I1/I2) от Ig с (градуировочный график, рис. 1) и определить по нему а и Ь. Значения I1и I2 можно получать непосредственно путём фотоэлектрич. регистрации или путём фотометрирования (измерения плотности почернения) линии определяемой примеси и линии сравнения при фоторегистрации. Фотометрирование производят на микрофотометрах.

Рис. 1. Градуировочный график (метод трёх эталонов).

Для возбуждения спектра в АСА используют различные источники света и соответственно различные способы введения в них образцов. Выбор источника зависит от конкретных условий анализа определённых объектов. Тип источника и способ введения пробы составляют гл. содержание частных методик АСА.

Первым искусств, источником света в АСА было пламя газовой горелки - источник весьма удобный для быстрого и точного определения мн. элементов. Темп-pa пламён горючих газов не высока (от 2100 К для смеси водород - воздух до 4500 К для редко используемой смеси кислород - циан). С помощью фотометрии пламени определяют ок. 70 элементов по их аналитич. линиям, а также по молекулярным полосам соединений, образующихся в пламенах.

В эмиссионном АСА широко используют электрич. источники света. В электрич. дуге постоянного тока между специально очищенными угольными электродами различной формы, в каналы к-рых помещают исследуемое вещество в измельчённом состоянии, можно производить одновременное определение десятков элементов. Она обеспечивает относительно высокую темп-ру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300-400 СПЕКТРАЛЬНЫЙ АНАЛИЗ фото №2 или переходя к высоковольтной дуге (3000- 4000 в), можно увеличить точность анализа.

Более стабильные условия возбуждения создаёт дуга переменного тока. В совр. генераторах дуги переменного тока (см., напр., рис. 2) можно получить различные режимы возбуждения: низковольтную искру, высокочастотную искру, дугу переменного тока, импульсный разряд и т. д.

Рис. 2. Принципиальная схема дуги переменного тока двойного питания: А - амперметр; Ri и R1 - реостаты; Tp - повышающий трансформатор; К - катушка индуктивности; АП - аналнтический промежуток; П - вспомогательный промежуток; C1 и C2 - конденсаторы.

Такие источники света с различными режимами используют при определении металлов и трудновозбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсированная искСПЕКТРАЛЬНЫЙ АНАЛИЗ фото №3а (рис. 3) служит гл. обр. источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях анализируемых электродов, приводят к изменениям состава плазмы разряда.

Рис. 3. Схема генератора конденсированной искры с управляющим промежутком: АП - регулируемый аналитический промежуток, образованный ванадиевыми электродами; R1 - реостат; Tp - питающий трансформатор; С - конденсатор; L -катушка индуктивности; П- управляющий промежуток; R2 - блокирующее сопротивление.

Чтобы устранить это явление, приходится производить предварит, обжиг проб и нормировать форму и размеры проб и стандартных образцов.

В АСА перспективно применение стабилизированных форм электрич. разряда типа плазмотронов различных конструкций, высокочастотного индукционного разряда, СВЧ-разряда, создаваемого магнетронными генераторами, высокочастотного факельного разряда. С помощью различных приёмов введения анализируемых веществ в плазму этих типов разряда (продувка порошков, распыление растворов и т. д.) значительно повышена относит, точность анализа (до 0,5-3% ), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых веществ применение этих типов разряда снижает пределы определения примесей на 1-2 порядка (до 10-5- 10-6 % ).

Для анализа чистых веществ, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в металлах и твёрдых веществах и т. д. весьма перспективным оказалось использование разряда в полом катоде и безэлектродных ВЧ-и СВЧ-разрядов. В АСА в качестве источников возбуждения применяются также лазеры (см. Спектроскопия лазерная).

Атомно-абсорбционяый С. a. (AAA) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу превращают в пар в атомизаторе (пламени, графитовой трубке, плазме стабилизированного ВЧ-или СВЧ-разряда). В AAA свет от источника дискретного излучения, проходя через этот пар, ослабляется и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. AAA проводят на спец. спектрофотометрах. Методика проведения AAA по сравнению с др. методами значит, проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. AAA с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности .

В АФА атомные пары пробы облучают светом источника резонансного излучения и регистрируют флуоресценцию определяемого элемента. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы их обнаружения этим методом весьма малы (~10-5- 106 % ).

АСА позволяет проводить измерения изотопного состава. Нек-рые элементы имеют спектральные линии с хорошо разрешённой структурой (напр., H, Не, U). Изотопный состав этих элементов можно измерять на обычных спектральных приборах с помощью источников света, дающих тонкие спектральные линии (полый катод, безэлектродные ВЧ-и СВЧ-лампы). Для проведения изотопного спектрального анализа большинства элементов требуются приборы высокой разрешающей способности (напр., эталон фабри - Перо). Изотопный спектральный анализ можно также проводить по электронно-колебательным спектрам молекул, измеряя изотопные сдвиги полос, достигающие в ряде случаев значит, величины.

Экспрессные методы АСА широко применяются в пром-стп, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит, роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3/4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологич. разведке для оценки месторождений производят ок. 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при разделении изотопов и определении возраста и состава геологич. и археологич. объектов и т. д. Лит.: 3 а и д е л ь A. H., Основы спектрального анализа, M., 1965; Методы спектрального анализа, M., 1962; Эмиссионный спектральный анализ атомных материалов, Л.- M., 1960; Русанов А. К., Основы количественного спектрального анализа руд и минералов, M., 1971; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, [Л.], 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, M., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич H. И., С е м е н е н-к о К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, M., 1973; Прокофьев В. К., Фотографические методы количественного спектрального анализа металлов и сплавов, ч. 1 - 2, M.- Л., 1951; МенкеГ., M е нке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., M., 1968; Кор о л ев H. В., P ю х и н В. В., Горбунов С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 3 изд., M., 1969; Стриганов А. Р., Свентицкий H. С., Таблицы спектральных линий нейтральных и ионизованных атомов, M-, 1966.

Л. В. Липис.

Молекулярный спектральный анализ (MCA)

В основе MCA лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный MCA. В MCA используют различные виды молекулярных спектров: вращательные [спектры в микроволновой и длинноволновой инфракрасной (ИК) областях], колебательные и колебательно-вращательные [спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (KPC), спектры ИК-флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные [спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции]. MCA позволяет проводить анализ малых количеств (в нек-рых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.

Осн. факторы, определяющие возможности методов MCA:

1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определённом интервале длин волн или частот исследуемого диапазона (для микроволнового диапазона оно ~ 105, для средней ИК-области в спектрах твёрдых и жидких веществ ~103);

2) количество измеренных спектров индивидуальных соединений;

3) существование общих закономерностей между спектром вещества и его молекулярным строением;

4) чувствительность и избирательность метода;

5) универсальность метода;

6) простота и доступность измерений спектров.

Качественный MCA устанавливает молекулярный состав исследуемого образца. Спектр молекулы является его однозначной характеристикой. Наиболее специфичны спектры веществ в газообразном состоянии с разрешённой вращательной структурой, к-рые исследуют с помощью спектральных приборов высокой разрешающей способности. Наиболее широко используют спектры ИК-поглощения и KPC веществ в жидком и твёрдом состояниях, а также спектры поглощения в видимой и УФ-областях. Широкому внедрению метода KPC способствовало применение для их возбуждения лазерного излучения.

Для повышения эффективности MCA в нек-рых случаях измерение спектров комбинируют с др. методами идентификации веществ. Так, всё большее распространение получает сочетание хроматографич. разделения смесей веществ с измерением ИК-спектров поглощения выделенных компонент.

К качественному MCA относится также т. н. структурный молекулярный анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания общие черты. Наиболее ярко это проявляется в колебательных спектрах. Так, наличие сульфгидрильной группы (-SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565-2575 см-1, нитрильная группа (-CN) характеризуется полосой 2200-2300 см-1и т. д. Присутствие таких характеристических полосв колебательных спектрах веществ с общими структурными элементами объясняется характеристичностью частоты и формы MH. молекулярных колебаний. Подобные особенности колебательных (и в меньшей степени электронных) спектров во MH. случаях позволяют определять структурный тип вещества.

Качественный анализ существенно упрощает и ускоряет применение ЭВМ. В принципе его можно полностью автоматизировать, вводя показания спектральных приборов непосредственно в ЭВМ. В её памяти должны быть заложены спектральные характеристич. признаки MH. веществ, на основании к-рых машина произведёт анализ исследуемого вещества.

Количественный MCA по спектрам поглощения основан на Бугера - Ламберта - Бера законе, устанавливающем связь между интенсивностями падающегои прошедшего через вещество I света от толщины поглощающего слоя l и концентрации вещества с:

Коэфф. к является характеристикой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие проведения количественного MCA - независимость к от концентрации вещества и постоянство к

в измеряемом интервале частот, определяемом шириной щели спектрофотометра. MCA по спектрам поглощения проводят преим. для жидкостей и растворов, для газов он значительно усложняется.

В практич. MCA обычно измеряют т. н. оптич. плотность:

D = In (Io/I) = n сl.

Если смесь состоит из n веществ, не реагирующих друг с другом, то оптич. плотность смеси на частоте СПЕКТРАЛЬНЫЙ АНАЛИЗ фото №4 аддитивна:

Это позволяет проводить полный или частичный анализ многокомпонентных смесей. Задача в этом случае сводится к измерению значений оптич. плотности в m точках спектра смеси (т>=n ) и решению получаемой системы уравнений:

Для количественного MCA обычно пользуются спектрофотометрами, позволяющими производить измерение l(СПЕКТРАЛЬНЫЙ АНАЛИЗ фото №5) в сравнительно широком интервале СПЕКТРАЛЬНЫЙ АНАЛИЗ фото №6 . Если полоса поглощения исследуемого вещества достаточно изолирована и свободна от наложения полос др. компонент смеси, исследуемый спектральный участок можно выделить, напр., при помощи интерференционного светофильтра. На его основе конструируют специализированные анализаторы, широко используемые в пром-сти.

При количественном MCA по спектрам KPC чаще всего интенсивность линии определяемого компонента смеси сравнивают с интенсивностью нек-рой линии стандартного вещества, измеренной в тех же условиях (метод "внешнего стандарта"). В др. случаях стандартное вещество добавляют к исследуемому в определённом количестве (метод "внутреннего стандарта").

Среди др. методов качественного и количественного MCA наибольшей чувствительностью обладает флуоресцентный анализ, однако в обычных условиях он уступает методам колебательной спектроскопии в универсальности и избирательности. Количественный MCA по спектрам флуоресценции основан на сравнении свечения раствора исследуемого образца со свечением ряда эталонных растворов близкой концентрации.

Особое значение имеет MCA с применением техники замороженных растворов в спец. растворителях, напр, парафинах (см. Шполъского эффект). Спектры веществ в таких растворах (спектры Шпольского) обладают ярко выраженной индивидуальностью, они резко различны для близких по строению и даже изомерных молекул. Это позволяет идентифицировать вещества, к-рые по спектрам их флуоресценции в обычных условиях установить не удаётся. Напр., метод Шпольского даёт возможность осуществлять качественный и количественный анализ сложных смесей, содержащих ароматические углеводороды. Качественный анализ в этом случае производят по спектрам люминесценции и поглощения, количественный - по спектрам люминесценции методами "внутреннего" и "внешнего" стандартов. Благодаря исключительно малой ширине спектральных линий в спектрах Шпольского в этом методе удается достигнуть пороговой чувствительности обнаружения нек рых многоатомных ароматич. соединений (~10-11г/см3).

Лит Чулановский В M, Введение в молекулярный спектральный анализ, M - Л , 1951, Беллами Л, Инфракрасные спектры сложных молекул, пер с англ , M , 1963, Применение спектроскопии в химии, пер с англ , M , 1959, Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом, M , 1959, ЮденфрендС, Флуоресцентный анализ в биологии и медицине, пер с англ , M , 1965. В T. Алексанян.




Смотреть больше слов в «Большой советской энциклопедии»

СПЕКТРАЛЬНЫЙ АНАЛИЗ →← СПЕКТРАЛЬНЫЕ СЕРИИ

Смотреть что такое СПЕКТРАЛЬНЫЙ АНАЛИЗ в других словарях:

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяни... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т е линейны... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ функции, обобщение гармонич анализа, то же самое, что и спектральное разложение функции

СПЕКТРАЛЬНЫЙ АНАЛИЗ

физич. методы качеств. .и количеств. определения состава в-ва, основанные на получении и исследовании его спектров. Основа С. а. — спектроскопи... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

- исследование спектральных характеристик линейных операторов: геометрии спектра и его основных частей, спектральной кратности, асимптотики собственных... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Когда луч солнца проходит через призму, то на экране позади нее возникает спектр. За двести лет к этому явлению привыкли. Если не вглядываться пристально, то кажется, что между отдельными частями спектра нет резких границ: красный непрерывно переходит в оранжевый, оранжевый в желтый и т. д. Тщательнее других в 1802 году рассмотрел спектр английский врач и химик Уильям Хайд Волластон (1766–1828). Волластон обнаружил при этом несколько резких темных линий, которые без видимого порядка пересекали спектр Солнца в разных местах. Ученый этим линиям особого значения не придал. Он полагал, что их появление вызвано либо особенностями призмы, либо особенностями источника света, либо другими какими-то побочными причинами. Сами линии представляли для него интерес только потому, что они отделяли друг от друга цветные полосы спектра. Позднее эти темные линии назвали фраунгоферовыми, увековечив имя их настоящего исследователя. Иосиф Фраунгофер (1787–1826) в 11 лет, после смерти родителей, пошел в ученье к шлифовальных дел мастеру. Из-за работы на школу времени оставалось мало. До 14 лет Иосиф не умел ни читать, ни писать. Но не было счастья, да несчастье помогло. Однажды дом хозяина рухнул. Когда же Иосифа извлекали из-под обломков, мимо проезжал наследный принц. Он пожалел юношу и вручил ему значительную сумму денег. Денег хватило юноше, чтобы купить себе шлифовальный станок и начать учиться. Фраунгофер в заштатном городке Бенедиктбейрене учился шлифовать оптические стекла. В своем предисловии к собранию сочинений Фраунгофера Э. Лом-мель так подытоживал его вклад в практическую оптику. «Благодаря введению своих новых и усовершенствованных методов, механизмов и измерительных инструментов для вращения и полировки линз… ему удалось получить достаточно большие образцы флинтгласа и кронгласа без всяких прожилок. Особенно большое значение имел найденный им метод точного определения формы линз, который совершенно изменил направление развития практической оптики и довел ахроматический телескоп до такого совершенства, о котором раньше нельзя было и мечтать». Чтобы произвести точные измерения дисперсии света в призмах, Фраунгофер в качестве источника света использовал свечу или лампу. При этом он обнаружил в спектре яркую желтую линию, известную теперь как желтая линия натрия. Вскоре установили, что эта линия находится всегда в одном и том же месте спектра, так что ее очень удобно использовать для точного измерения показателей преломления. После этого, говорит Фраунгофер в своей первой работе 1815 года: «…я решил выяснить, можно ли видеть подобную светящуюся линию в солнечном спектре. И я с помощью телескопа обнаружил не одну линию, а чрезвычайно большое количество вертикальных линий, резких и слабых, которые, однако, оказались темнее остальной части спектра, а некоторые из них казались почти совершенно черными». Всего он насчитал их там 574. Фраунгофер дал названия и указал их точное местоположение в спектре. Обнаружилось, что положение темных линий было строго неизменным, в частности, всегда в одном и том же месте желтой части спектра появлялась резкая двойная линия. Ее Фраунгофер назвал линией О. Ученый также обнаружил, что в спектре пламени спиртовки на том же самом месте, где и темная линия О в спектре Солнца, всегда присутствует яркая двойная желтая линия. Лишь много лет спустя стало понятно значение этого открытия. Продолжая свои исследования темных линий в спектре Солнца, Фраунгофер понял главное: их причина не в оптическом обмане, а в самой природе солнечного света. В результате дальнейших наблюдений он обнаружил подобные линии в спектре Венеры и Сириуса. Одно открытие Фраунгофера, как выяснилось позднее, оказалось особенно важным. Речь идет о наблюдении над двойной Д-линией. В 1814 году, когда ученый опубликовал свои исследования, на это наблюдение особого внимания не обратили. Однако спустя 43 года Вильям Сван (1828–1914) установил, что двойная желтая линия О в спектре пламени спиртовки возникает в присутствии металла натрия. Увы, как и многие до него, Сван не осознал значения этого факта. Он так и не сказал решающих слов: «Эта линия принадлежит металлу натрию». В 1859 году к этой простой и важной мысли пришли два ученых: Густав Роберт Кирхгоф (1824–1887) и Роберт Вильгельм Бунзен (1811–1899). В университетской лаборатории Гейдельберга они поставили следующий опыт. До них через призму пропускали либо только луч Солнца, либо только свет от спиртовки. Ученые решили пропустить их одновременно. В результате они обнаружили явление, о котором рассказывает подробно в своей книге Л.И. Пономарев: «Если на призму падал только луч Солнца, то на шкале спектроскопа они видели спектр Солнца с темной линией О на своем обычном месте. Темная линия по-прежнему оставалась на месте и в том случае, когда исследователи ставили на пути луча горящую спиртовку. Но когда на пути солнечного луча они ставили экран и освещали призму только светом спиртовки, то на месте темной линии О четко проявлялась яркая желтая линия О натрия. Кирхгоф и Бунзен убирали экран — линия О вновь становилась темной. Потом они луч Солнца заменяли светом от раскаленного тела — результат был всегда тот же: на месте ярко-желтой линии возникала темная. То есть всегда пламя спиртовки поглощало те лучи, которые оно само испускало. Чтобы понять, почему это событие взволновало двух профессоров, проследим за их рассуждениями. Ярко-желтая линия О в спектре пламени спиртовки возникает в присутствии натрия. В спектре Солнца на этом же месте находится темная линия неизвестной природы. Спектр луча от любого раскаленного тела — сплошной, и в нем нет темных линий. Однако если пропустить такой луч через пламя спиртовки, то его спектр ничем не отличается от спектра Солнца — в нем также присутствует темная линия и на том же самом месте. Но природу этой темной линии мы уже почти знаем, во всяком случае, мы можем догадываться, что она принадлежит натрию. Следовательно, в зависимости от условий наблюдения линия О натрия может быть либо ярко-желтой, либо темной на желтом фоне. Но в обоих случаях присутствие этой линии (все равно какой — желтой или темной!) означает, что в пламени спиртовки есть натрий. А поскольку такая линия спектра пламени спиртовки в проходящем свете совпадает с темной линией О в спектре Солнца, то, значит, и на Солнце есть натрий. Причем он находится в газовом внешнем облаке, которое освещено изнутри раскаленным ядром Солнца». Короткая заметка в две страницы, написанная Кирхгофом в 1859 году, содержала сразу четыре открытия: — каждый элемент имеет свой линейчатый спектр, а значит строго определенный набор линий; — подобные линии можно использовать для анализа состава веществ не только на Земле, но и на звездах; — Солнце состоит из горячего ядра и сравнительно холодной атмосферы раскаленных газов; — на Солнце есть элемент натрий. Первые три положения вскоре подтвердились, в частности, гипотеза о строении Солнца. Экспедиция Французской академии наук в 1868 году во главе с астрономом Жансеном побывала в Индии. Она обнаружила, что при полном солнечном затмении, в момент, когда его раскаленное ядро закрыто тенью Луны и светит только корона, — все темные линии в спектре Солнца вспыхивают ярким светом. Второе положение Киргхоф и Бунзен не только блестяще подтвердили, но и воспользовались им для открытия двух новых элементов: рубидия и цезия. Так родился спектральный анализ, с помощью которого теперь можно узнавать химический состав далеких галактик, измерять температуру и скорость вращения звезд и многое другое. Позднее для приведения элементов в возбужденное состояние стали использовать чаще всего электрическое напряжение. Под воздействием напряжения элементы излучают свет, характеризующийся определенными длинами волн, т. е. имеющий определенную окраску. Этот свет расщепляется в спектральном аппарате (спектроскопе), главной частью которого является стеклянная или кварцевая призма. При этом образуется полоса, состоящая из отдельных линий, каждая из которых является характерной для определенного элемента. Например, и раньше было известно, что минерал клевеит при его нагревании выделяет газ, похожий на азот. Этот газ при его исследовании с помощью спектроскопа оказался новым, еще неизвестным благородным газом. При электрическом возбуждении он испускал линии, которые уже раньше были обнаружены при анализе лучей Солнца с помощью спектроскопа. Это был своеобразный случай, когда элемент, открытый ранее на Солнце, был обнаружен Рамзаем и на Земле. Ему было присвоено название гелий, от греческого слова «гелиос» — Солнце. Сегодня известно два вида спектров: сплошной (или тепловой) и линейчатый. Как пишет Пономарев, «тепловой спектр содержит все длины волн, излучается он при нагревании твердых тел и не зависит от их природы. Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паров (когда малы взаимодействия между атомами), и — что особенно важно — этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов. То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все, но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году, благодаря работам знаменитого английского астрофизика Нормана Локьера (1836–1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!»... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

, метод качеств. и количеств. определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Р... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

— см. Спектроскопия.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978. Спектральный анализ         (a. spe... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

(a. spectrum analysis; н. Spektralanalyse; ф. analyse spectrale, analyse spectrographique; и. analisis espectroscopica) - физ. метод определения хим. состава веществ, основанный на использовании спектров электромагнитного излучения, поглощения, отражения или люминесценции. B зависимости от того, определяется атомный или молекулярный состав, различают C. a. атомный и молекулярный. C. a. подразделяется также на качественный и количественный. Первый проводится путём сравнения спектра образца co спектрами известных веществ. Bторой основан на измерении интенсивности излучения (величины поглощения, отражения и т.д.) на длинах волн, принадлежащих определяемым атомам или молекулам, и последующем вычислении по их значениям концентраций. Cреди методов C. a. - Aтомно-абсорбционный анализ, Aтомно- флуоресцентный анализ, Лазерный спектральный анализ, метод рентгеновской флуоресценции, атомный эмиссионный и др. Используют их в горн. деле и геологии для установления хим. состава г. п., руд, минералов, технол. проб в процессе их обогащения и переработки, в геохим. исследованиях. Hапр., атомный эмиссионный C. a. применяется на всех стадиях поисковых и разведочных работ, при изучении м-ний, в минералогич. исследованиях для определения св. 70 элементов при содержаниях от 10-6 - 10-5 % до десятка % c возможностью одноврем. определения в каждой пробе до 40 элементов. Pентгеновская флуоресценция используется для определения элементов (c ат. н. более 10) при концентрациях от 10-4% до десятков %, обладает высокой воспроизводимостью. B геологии нефтей при изучении их состава, исследовании минералов и шлифов, выяснении природы окраски и т.д. эффективно применяется молекулярный C. a. Литература: Зайдель A. H., Oсновы спектрального анализа, M., 1965; Pусанов A. K., Oсновы количественного спектрального анализа руд и минералов, 2 изд., M., 1978; Mетодические основы исследования химического состава горных пород, руд и минералов, M., 1979. B. Б. Белянин.... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗВведенное Бунзеном и Кирхгофом в 1860 году химическое исследование вещества посредством свойственных этому последнему цветных линий,... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

[spectrum analysis] — метод определения химического или изотопного состава вещества, основанного на исследовании его спектров.Смотри также: — Анализ — ... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

стационарных случайных процессов, С. а. временных рядов, - 1) то же, что и спектральное разложение стационарных случайных процессов; 2) совокупность с... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

- Метод определения химического состава вещества по изучению его спектра, основанный на том, что атомы каждого химического элемента дают характерный для них спектр. Различают оптический и рентгеновский спектральный анализ. Для получения спектра вещество переводят в парообразное состояние в источнике возбуждения: пламени горелки, вольтовой дуге или высоковольтной искре. Свет направляется на щель спектрографа. Чувствительность спектрального анализа очень различна для разных элементов. Например, в ультрафиолетовой части спектра, получаемого прн обычной методике в дуге, она составляет для меди и серебра около 1*10<sup>-4</sup>%, а для фосфора и калия около 3*10<sup>-1</sup>%. Спектральный анализ широко применяется для характеристики вещественного состава природных образований.<br>... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ, физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.<br><br><br>... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ анализ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.<br>... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ , физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

СПЕКТРАЛЬНЫЙ АНАЛИЗ, физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

- физический метод качественного и количественногоопределения состава вещества, проводимый по его спектрам оптическим.Различают атомный и молекулярный спектральный анализ, эмиссионный (поспектрам испускания) и абсорбционный (по спектрам поглощения). Вкачественном спектральном анализе полученный спектр интерпретируют спомощью таблиц и атласов спектров элементов и индивидуальных соединений; вколичественном спектральном анализе определяют содержание исследуемоговещества по относительной или абсолютной интенсивностям линий или полос вспектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

физ. метод качественного и количественного определения состава в-ва, проводимый по его спектрам оптическим. Различают атомный и мол. С. а., эмиссионный... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

физ. метод качеств. и количеств. анализа в-в, осн. на изучении их спектров - испускания (эмиссионный С. а.), поглощения (абсорбц. С. а.), комбинационно... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

физический метод качественного и количественного анализа химического состава веществ, основанный на изучении их спектров оптических. Отличается высокой чувствительностью и применяется в химии, астрофизике, металлургии, геологической разведке и т. д. Теоретической основой С. а. является Спектроскопия. Астрономический словарь.EdwART.2010.... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

   в экспертных исследованиях физический метод определения качественного и количественного состава вещества, проводимый по его оптическим спектрам. Раз... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ

frequency analysis, frequency-domain analysis, spectral [spectrum] analysis, spectral [spectrum] estimation* * *emission analysis

СПЕКТРАЛЬНЫЙ АНАЛИЗ

spectral analysis, spectrographic analysis, spectroscopic analysis

СПЕКТРАЛЬНЫЙ АНАЛИЗ

analyse spectrale, analyse spectroscopique, essai spectroscopique

СПЕКТРАЛЬНЫЙ АНАЛИЗ

frequency analysis, spectral analysis

СПЕКТРАЛЬНЫЙ АНАЛИЗ

(напр. колебаний) spectral analysis

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Spektralanalyse f, Spektroskopie f

СПЕКТРАЛЬНЫЙ АНАЛИЗ

спектральны аналіз

СПЕКТРАЛЬНЫЙ АНАЛИЗ

спектрлік талдау

СПЕКТРАЛЬНЫЙ АНАЛИЗ

спектрлік талдау

СПЕКТРАЛЬНЫЙ АНАЛИЗ

спектрлі талдау

СПЕКТРАЛЬНЫЙ АНАЛИЗ (В ЛИНЕЙНОЙ АЛГЕБРЕ)

Спектральный анализ линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ ЗВУКОВ РЕЧИ

СПЕКТРАЛЬНЫЙ АНАЛИЗ ЗВУКОВ РЕЧИ, метод установления акустич структуры звуков речи, представляющих собой сложный, непрерывно изменяющийся во времени а... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ ЗВУКОВ РЕЧИ

        метод установления акустической структуры звуков речи (См. Звуки речи), представляющих собой сложный, непрерывно изменяющийся во времени акусти... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ (МАТЕМАТИЧ.)

Спектральный анализ функции, обобщение гармонического анализа, тоже самое, что и спектральное разложение функции.

СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ

СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ, элементный анализ вещественного состава материалов по их рентгеновским спектрам. Качеств. С. а. р. выполняют по ... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ

элементный анализ в-ва по его рентгеновским спектрам. Качеств. С. а. р. выполняют по спектр. положению характеристич. линий в спектре испускани... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ

        элементный анализ вещественного состава материалов по их рентгеновским спектрам (См. Рентгеновские спектры). Качеств. С. а. р. выполняют по спе... смотреть

СПЕКТРАЛЬНЫЙ АНАЛИЗ (ФИЗИЧ., ХИМИЧ.)

Спектральный анализ, физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании... смотреть

T: 412