УПРУГОСТИ ТЕОРИЯ

УПРУГОСТИ ТЕОРИЯ, раздел механики, в к-ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т.- теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле, авиа- и ракетостроении, машиностроении, горном деле и др. областях техники и промышленности, а также в физике, сейсмологии, биомеханике и др. науках. Объектами исследования методами У. т. являются разнообразные тела (машины, сооружения, конструкции и их элементы, горные массивы, плотины, геологич. структуры, части живого организма и т. п.), находящиеся под действием сил, температурных полей, радиоактивных облучений и др. воздействий. В результате расчётов методами У. т. определяются допустимые нагрузки, при к-рых в рассчитываемом объекте не возникают напряжения или перемещения, опасные с точки зрения прочности или недопустимые по условиям функционирования; наиболее целесообразные конфигурации и размеры сооружений, конструкций и их деталей; перегрузки, возникающие при динамич. воздействии, напр. при прохождении упругих волн; амплитуды и частоты колебаний конструкций или их частей и возникающие в них динамич. напряжения; усилия, при к-рых рассчитываемый объект теряет устойчивость. Этими расчётами определяются также материалы, наиболее подходящие для изготовления проектируемого объекта, или материалы, к-рыми можно заменить части организма (костные и мышечные ткани, кровеносные сосуды и т. п.). Методы У. т. эффективно используются и для решения нек-рых классов задач теории пластичности (в методе по-следоват. приближений).

Физические законы упругости материалов, надёжно проверенные экспериментально и имеющие место для большинства материалов, по крайней мере при малых (а иногда и очень больших) деформациях, отражают взаимно однозначные зависимости между текущими (мгновенными) значениями напряжений о и деформаций Е, в отличие от законов пластичности, в к-рых напряжения зависят от процесса изменения деформаций (при одних и тех же деформациях, достигнутых путём различных процессов, напряжения различны). При растяжении цилиндрич. образца длины l, радиуса r, с площадью поперечного сечения F имеет место пропорциональность между

растягивающей силой Р, продольным удлинением образца dl и поперечным удлинением dr, к-рая выражается равенствами: c1 = Ee1, e2 =- ve1, где c1 = P/F - нормальное напряжение в поперечном сечении, e1 = dl/1 - относит. удлинение образца, e2 = dr/r- относит. изменение поперечного размера; Е - модуль Юнга (модуль продольной упругости), v - Пуассона коэффициент. При кручении тонкостенного трубчатого образца касат. напряжение т в поперечном сечении вычисляется по значениям площади сечения, его радиуса и приложенного крутящего момента. Деформация сдвига у определяемая по наклону образующих, связана с т равенством т=Gу, где G - модуль сдвига.

При испытаниях образцов, вырезанных из изотропного материала по разным направлениям, получаются одни и те же значения Е, G и v. В среднем изотропны многие конструкционные металлы и сплавы, резина, пластмассы, стекло, керамика, бетон. Для анизотропного материала (древесина, кристаллы, армированные бетон и пластики, слоистые горные породы и др.) упругие свойства зависят от направления. Напряжение в любой точке тела характеризуется шестью величинами - компонентами напряжений: нормальными напряжениями cxx, cyy, cгг и касательными напряжениями cxy, cуг, czx, причём cxy = cyx и т. д. Деформация в любой точке тела также характеризуется шестью величинами - компонентами деформаций: относительными удлинениями exx, eyy, ezz и сдвигами exy, eyz, e, Причём exy = eух и т. д..

Осн. физ. законом У. т. является обобщённый Тука закон, согласно к-рому нормальные напряжения линейно зависят от деформаций. Для изотропных материалов эти зависимости имеют вид:

няя (гидростатическая) деформация, лямбда и мю = G - Ламе постоянные. Т. о., упругие свойства изотропного материала характеризуются двумя постоянными ч и м или к.-н. выраженными через них двумя модулями упругости.

Равенство (1) можно также представить в виде

(гидростатич.) напряжение, К - модуль всестороннего сжатия.

Для анизотропного материала 6 зависимостей между компонентами напряжений и деформаций имеют вид:

Из входящих сюда 36 коэфф. cij, наз. модулями упругости, 21 между собой независимы и характеризуют упругие свойства анизотропного материала. Для нелинейного упругого изотропного материала в равенствах (2) всюду вместо ц входит коэфф. Ф(еu)/3eu, а соотношение c = ЗKе заменяется равенством c = f(e) где величина eu наз. интенсивностью деформации, а функции Ф и f, универсальные для данного материала, определяются из опытов. Когда Ф(еu) достигает нек-рого критич. значения, возникают пластич. деформации. Законы пластичности при пропорциональном возрастании нагрузок или напряжений (простое нагружение) имеют тот же вид, но с др. значениями функций Ф и f (законы теории малых упруго-пластич. деформаций), а при уменьшении напряжений (разгрузке) имеют место соотношения (1) или (2), в к-рых вместо cij и eij подставляются их приращения (разности двух текущих значений).

Математическая задача У. т. при равновесии состоит в том, чтобы, зная действующие внеш. силы (нагрузки) и т. н. граничные условия, определить значения в любой точке тела компоненты напряжений и деформаций, а также компоненты их, иу, иг вектора перемещения каждой частицы тела, т. е. определить эти 15 величин в виде функций от координат х, у, z точек тела. Исходными для решения этой задачи являются дифференциальные ур-ния равновесия:

где р - плотность материала, XYZ - проекции на координатные оси действующей на каждую частицу тела массовой силы (напр., силы тяжести), отнесённые к массе этой частицы.

К трём ур-ниям равновесия присоединяются 6 равенств (1) в случае изотропного тела и ещё 6 равенств вида: e=dux/dx,..., 2exy =dux/dy+диy/dx ,..., (5) устанавливающих зависимости между компонентами деформаций и перемещений.

Когда на часть S1 граничной поверхности тела действуют заданные поверхностные силы (напр., силы контактного взаимодействия), проекции к-рых, отнесённые к единице площади, равны Fx, Fv, Fz, а для части S2 этой поверхности заданы перемещения её точек фx, фv, фz, граничные условия имеют вид:

где l1, l2, l3 - косинусы углов между нормалью к поверхности и координатными осями. Первые условия означают, что искомые напряжения должны удовлетворять на границе S1 трём равенствам (6), а вторые - что искомые перемещения должны удовлетворять на границе S2 равенствам (7); в частном случае может быть фх = фy = фz = 0 (часть поверхности S2 жёстко закреплена). Напр., в задаче о равновесии плотины массовая сила - сила тяжести, поверхность S2 подошвы плотины неподвижна, на остальной поверхности S1 действуют силы: напор воды, давление различных надстроек, трансп. средств и т. д.

В общем случае поставленная задача представляет собой пространственную задачу У. т., решение к-рой трудно осуществимо. Точные аналитич. решения имеются лишь для нек-рых частных задач: об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конич. тела и др. Т. к. ур-ния У. т. являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип линейной суперпозиции). В частности, если для к.-н. тела найдено решение при действии сосредоточенной силы в к.-л.,произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения, наз. Грина функциями, получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и нек-рые др.). Предложен ряд аналитич. методов решения пространственной задачи У. т.: вариационные методы (Ритца, Бубнова-Галёркина, Ка-стильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих метедов решений пространственной задачи У. т.- одна из наиболее актуальных проблем У. т.

При решении плоских задач У. т. (когда один из компонентов перемещения равен нулю, а два других зависят только от двух координат) широкое применение находят методы теории функций комплексного переменного. Для стержней, пластин и оболочек, часто используемых в технике, найдены приближённые решения мн. практически важных задач на основе нек-рых упрощающих предположений. Применительно к этим объектам специфич. интерес представляют задачи об устойчивости равновесия (см. Устойчивость упругих систем).

В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения темп-ры. При матем. постановке этой задачи в правую часть первых трёх ур-ний (1) добавляется член-(З лямбда +  2мю)аТ, где а - коэфф. линейного теплового расширения, T(x1,x2,x3) - заданное поле темп-ры. Аналогичным образом строится теория электромагнито-упругости и упругости подвергаемых облучению тел.

Большой практич. интерес представляют задачи У. т. для неоднородных тел. В этих задачах коэфф. Ч, м в ур-нии (1) являются не константами, а функциями координат, определяющими поле упругих свойств тела, к-рое иногда задают статистически (в виде нек-рых функций распределения). Применительно к этим задачам разрабатываются статистич. методы У. т., отражающие статистич. природу свойств поликристаллич. тел.

В динамич. задачах У. т. искомые величины являются функциями координат и времени. Исходными для матем. решения этих задач являются дифференциальные ур-ния движения, отличающиеся от ур-ний (4) тем, что правые части вместо нуля содержат инерционные члены pd2ux/dt2 и т. д. К исходным ур-ниям должны также присоединяться ур-ния (1), (5) и, кроме граничных условий (6), (7), ещё задаваться начальные условия, определяющие, напр., распределение перемещений и скоростей частиц тела в начальный момент времени. К этому типу относятся задачи о колебаниях конструкций и сооружений, в к-рых могут определяться формы колебаний и их возможные смены, амплитуды колебаний и их нарастание или убывание во времени, резонансные режимы, динамич. напряжения, методы возбуждения и гашения колебаний и др., а также задачи о распространении упругих волн (сейсмич. волны и их воздействие на конструкции и сооружения, волны, возникающие при взрывах и ударах, термоупругие волны и т. д.).

Одной из совр. проблем У. т. является матем. постановка задач и разработка методов их решения при конечных (больших) упругих деформациях.

Экспериментальные методы У. т. (метод многоточечного тензо-метрирования, поляризационно-оптиче-ский метод исследования напряжений, метод муаров и др.) позволяют в нек-рых случаях непосредственно определить распределение напряжений и деформаций в исследуемом объекте или на его поверхности. Эти методы используются также для контроля решений, полученных аналитич. и численными методами, особенно когда решения найдены при к.-н. упрощающих допущениях. Иногда эффективными оказываются экспериментально-теоретич. методы, в к-рых частичная информация об искомых функциях получается из опытов.

Лит.: Ляв А., Математическая теория упругости, пер. с англ., М. - Л., 1935; Лейбензон Л. С., Курс теории упругости, 2 изд., М.-Л., 1947; Мусхелишвили Н. И., Некоторые основные задачи математической теории упругости, 5 изд., М., 1966; Трёхмерные задачи математической теории упругости, Тб., 1968; Лурье А. И., Теория упругости, М., 1970; Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., т. 1 - 2, М., 1955; Теория температурных напряжений, пер. с англ., М., 1964; Снеддон И. Н., Берри Д. С., Классическая теория упругости, пер. с англ., М., 1961; Тимошенко С. П., Гудьер Дж. Н., Теория упругости, пер. с англ., М., 1975. А. А. Ильюшин, В. С. Ленский.




Смотреть больше слов в «Большой советской энциклопедии»

УПРУГОСТЬ →← УПРУГОСТИ МОДУЛИ

Смотреть что такое УПРУГОСТИ ТЕОРИЯ в других словарях:

УПРУГОСТИ ТЕОРИЯ

        раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах... смотреть

УПРУГОСТИ ТЕОРИЯ

раздел механики, в к-ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием на... смотреть

УПРУГОСТИ ТЕОРИЯ

раздел механики сплошных сред, рассматривающий деформацию упругих тел под действием внеш. сил, изменения темп-ры и др. причин. У. т. - науч. основа для... смотреть

T: 200