ФЕРМЕНТЫ

ФЕРМЕНТЫ (от лат. fermentum - закваска), энзимы, специфические белковые катализаторы, присутствующие во всех живых клетках. Почти все био-химич. реакции, протекающие в любом организме и в своём закономерном сочетании составляющие его обмен веществ, катализируются соответствующими Ф. Направляя и регулируя обмен веществ, Ф. играют важнейшую роль во всех процессах жизнедеятельности.

Как всякие катализаторы, Ф. снижают энергию активации, необходимую для осуществления той или иной хим. реакции, направляя её обходным путём- через промежуточные реакции, к-рые требуют значительно меньшей энергии активации. Так, реакция АБ->А + Б в присутствии Ф. идёт след. образом: АБ + Ф->АБФ и далее АБФ->БФ + А и БФ->Б + Ф. Напр., для осуществления реакции гидролиза дисахарида сахарозы, в результате к-рого образуются глюкоза и фруктоза, без участия катализатора требуется 32 000 кал (1 кал = = 4,19 дж) на моль сахарозы. Если же реакция катализируется Ф. р-фруктофу-ранозидазой, то необходимая энергия активации составляет всего 9400 кал. Подобное понижение энергии активации под влиянием Ф.- следствие перераспределения электронных плотностей и нек-рой деформации молекул субстрата, происходящей при образовании промежуточного соединения - фермент-субстратного комплекса (АБФ). Эта деформация, ослабляя внутримолекулярные связи, приводит к понижению необходимой энергии активации и, следовательно, ускоряет течение реакции (см. Катализ, Ферментативный катализ).

История изучения ферментов. В 1814 рус. химик К. Г. С. Кирхгоф открыл ферментативное действие водных вытяжек из проросшего ячменя, расщеплявших крахмал до сахара. Можно считать, что эти работы положили начало энзимологии (ферментологии) как самостоятельному разделу биол. химии. В 1833 франц. химиками А. Пайеном и Ж. Персо впервые был выделен из солода препарат фермента амилазы, что способствовало развитию препаративной химии Ф. В сер. 19 в. разгорелась дискуссия о природе брожения между Л. Постером, с одной стороны, и Ю. Либихом, П. Э. М. Бертло и К. Бернаром - с другой. Опираясь на свои классич. работы, Пастер развивал представление о том, что брожение вызывается лишь живыми микроорганизмами и что процесс брожения неразрывно связан с их жизнедеятельностью. Либих и его сторонники, отстаивая хим. природу брожения, считали, что оно является следствием образования в клетках микроорганизмов растворимых Ф., подобных выделяемой из солода амилазе. Однако все попытки выделить из разрушенных дрожжевых клеток растворимый Ф., способный вызвать брожение, не удавались. Дискуссия Либиха и Па-стера о природе брожения была разрешена в 1897 Э. Бухнером, к-рый, растирая дрожжи с инфузорной землёй, выделил из них бесклеточный растворимый ферментный препарат (названный им зимазой), вызывавший спиртовое брожение. Открытие Бухнера утвердило материалистич. понимание природы брожений и имело большое значение для дальнейшего развития как энзимологии, так и всей биохимии.

В нач. 20 в. Р. Вильштеттер с сотрудниками стал широко применять для выделения и очистки Ф. метод адсорбции (впервые предложен А. Я. Данилевским для разделения Ф. поджелудочной железы). Работы Вильштеттера, имевшие большое значение для характеристики свойств отдельных Ф., привели вместе с тем к принципиально неправильному выводу, что Ф. не принадлежат ни к одному из известных классов органич. соединений. Выдающимся успехом в выяснении хим. природы Ф. были исследования амер. биохимиков Дж. Самнера, выделившего в 1926 в кристаллич. виде Ф. уреазу из семян канавалии, и Дж. Нортропа, получившего в 1930 кристаллы протеолитического Ф. пепсина. Работы Самнера и Нортропа указали путь получения высокоочищенных кристаллич. препаратов Ф. и вместе с тем неопровержимо доказали белковую природу Ф.

С сер. 20 в. благодаря развитию методов физ.-хим. анализа (гл. обр. хроматографии) и методов белковой химии расшифрована первичная структура мн. Ф. Так, работами амер. биохимиков С. Мура, У. Стайна и К. Анфинсена показано, что Ф. рибонуклеаза из поджелудочной железы быка представляет собой полипе-птидную цепочку, состоящую из 124 аминокислотных остатков, соединённых в 4 местах дисульфидными связями.

С помощью рентгеноструктурного анализа расшифрована вторичная и третичная структура ряда Ф. Так, методом рентгеноструктурного анализа англ. учёный Д. Филлипс в 1965 установил трёхмерную структуру Ф. лизоцима. Показано, что мн. Ф. обладают также четвертичной структурой, т. е. их молекула состоит из неск. идентичных или различных по составу и структуре белковых субъединиц (см. Биополимеры).

Общая характеристика ферментов. Все Ф. разделяются на две большие группы: однокомпонентные, состоящие исключительно из белка, и двухкомпонентные, состоящие из белка, наз. апоферментом, и небелковой части, нач. простетической группой. Апофермент двухкомпонентных Ф. наз. также белковым носителем, а простетическую группу - активной группой. Благодаря работам О. Вар-бурга, А. Теорелля, Ф. Линена, Ф. Лип-мана и Л. Лелуара установлено, что про-стетические группы мн. Ф. представляют собой производные витаминов или нук-леотидов. Т. о. была открыта важнейшая функциональная связь между Ф., витаминами и нуклеотидами, являющимися строительными "кирпичиками" нуклеиновых к-т.

Примером двухкомпонентного Ф. является пируватдекарбоксилаза, катализирующая расщепление пировиноградной кислоты на двуокись углерода и уксусный альдегид: СНзСОСООН-> ->СН3СНО + СО2. Про-стетич. группа пируват-декарбоксилазы (тиа-минпирофосфат) образована молекулой тиами-на (витамина B1) и двумя остатками фосфорной кислоты. Про-стетические группы ряда важных окислительно-восстановительных Ф. -дегидро-геназ содержат производное амида никотиновой к-ты (ниацина), или же рибофлавина (витамина В2); в состав простетич. группы т. н. пиридоксалевых ферментов, катализирующих перенос аминогрупп (-NH2) и декарбоксилирование и ряд др. превращений аминокислот, входит пиридоксальфосфат - производное витамина Be; активная группа Ф., катализирующих перенос остатков различных органич. к-т (напр., ацетила СН3СО-), включает витамин пантотеновую кислоту. К двухкомпонентным, Ф. относятся также важные окислительные Ф.- каталаза (катализирует реакцию разложения перекиси водорода на воду и кислород) и пероксидаза (окисляет перекисями различные соединения, напр. полифенолы с образованием соответствующего хинона и воды). Каталитич. действие этих Ф. может быть воспроизведено с помощью ионов трёхвалентного железа. Эти ионы обладают, однако, очень малой каталитич. активностью, к-рая может быть усилена, если атом железа входит в состав гема. Хотя гем обладает уже значит. каталазным действием, его каталитич. активность всё же в неск. миллионов раз меньше активности каталазы, в к-рой гем в качестве простетич. группы этого Ф. связан со специфич. белком. Гем обладает также слабым пероксидазным действием, однако это действие проявляется в полной мере только после соединения гема со специфич. белком в целостный Ф. пероксидазу. Т. о., соединение простетич. группы с белком приводит к резкому возрастанию её каталитич. активности. Вместе с тем от природы белка зависит не только каталитич. активность, но и специфичность действия Ф. Прочность связи простетич. группы и апофермента различна у разных Ф. У некоторых Ф., напр. у дегидрогеназ, катализирующих окисление различных субстратов путём отщепления водорода, эта связь является непрочной. Такие Ф. легко диссоциируют (напр., при диализе) и распадаются на простетич. группу и апофермент. Простетические группы, легко отделяющиеся от белковой части Ф., наз. коферментами.

Многие Ф. содержат металлы, без которых Ф. не активен. Эти металлы наз. кофакторами. Так, пероксидаза и каталаза содержат железо, аскор-бинатоксидаза, катализирующая окисление аскорбиновой кислоты,- медь, алкогольдегидрогеназа, окисляющая спирты в соответствующие альдегиды,- цинк.

Специфичность и механизм действия ферментов. Действие Ф., в отличие от неорганич. катализаторов, строго специфично и зависит от строения субстрата, на к-рый Ф. действует. Прекрасным примером такой зависимости служит катализируемая аргиназой реакция гидро-литич. расщепления аминокислоты аргинина на орнитин и мочевину:

Первичная структура (последовательность аминокислотных остатков) фермента рибонуклеазы из поджелудочной железы быка. Чёрным обозначены 4 дисульфидных мостика, скрепляющих полипептидную цепь фермента.

Однако аргиназа не расщепляет метилового эфира аргинина:

Дипептид, состоящий из остатков двух молекул аргинина, под действием аргиназы даёт лишь половину теоретич. кол-ва мочевины. Очевидно, что, хотя расщепление аргинина происходит в месте, весьма отдалённом от карбоксильной (СООН) группы (показано пунктиром), необходимым условием действия аргиназы является её соединение с карбоксильной группой аргинина. Поэтому замещение водорода в карбоксильной группе на метальный остаток или же связывание карбоксильной группы со второй молекулой аргинина оказывают резкое влияние на действие аргиназы. Примеры специфичности действия Ф. могут быть приведены при рассмотрении их стереохи-мич. специфичности, т. е. действия Ф. на стереоизомеры (см. Изомерия). Так, Ф., окисляющий природные L-амино-кислоты, не действует на D-изомеры этих же аминокислот; Ф. дипептидаза, гидролизирующий дипептиды, состоящие из остатков L-аминокислот, не действует на такие же дипептиды, состоящие из остатков D-аминокислот. Специфичность действия Ф. послужила нем. учёному Э. Фишеру основанием для сравнения субстрата и Ф., к-рый катализирует его превращение, с замком и соответствующим ему ключом. Стереохим. специфичность Ф. теснейшим образом связана с одной из осн. особенностей живых организмов - их способностью к синтезу оптически активных органических соединений.

В образовании соединения между ферментом и субстратом - т. н. фермент-субстратного комплекса - принимают участие лишь нек-рые функциональные группы молекулы Ф., образующие его активный центр. Так, напр., в молекуле гидролизирующего белки химотрипсина, состоящего из 246 аминокислотных остатков, активный центр образован одним из остатков серина (химотрипсин относится к сериновым протеиназам) и двумя остатками гистидина, расположенными в удалённых друг от друга участках по-липептидной цепи. Сближение этих функциональных групп активного центра происходит благодаря свойственной молекуле химотрипсина специфич. пространственной (третичной) структуре. Её нарушение в результате денатурации белка или каких-либо хим. модификаций приводит к изменению или полной потере каталитич. активности. В случае двух-компонентных Ф. в образовании фермент-субстратного комплекса принимают участие не только функциональные группы апофермента, но и простетич. группа. Так, при расщеплении пировиноградной к-ты пируватдекарбоксилазой субстрат связывается с частью молекулы тиамин-пирофосфата след. образом:

Исключительно высокая специфичность действия Ф. объясняется их белковой природой. Так, пиридоксалевые Ф., содержащие один и тот же кофермент (пири-доксальфосфат), могут принадлежать к различным классам и катализировать самые разнообразные реакции. Специфичность их действия зависит от природы апофермента.

Условия действия ферментов. Действие Ф. зависит от ряда факторов, прежде всего от темп-ры и реакции среды (рН). Оптимальная темп-pa, при к-рой активность Ф. наиболее высока, находится обычно в пределах 40-50 °С. При более низких темп-pax скорость ферментативной реакции, как правило, снижается, а при темп-pax, близких к О °С, практически реакция полностью прекращается. При повышении темп-ры выше оптимальной скорость ферментативной реакции также снижается и, наконец, полностью прекращается. Снижение интенсивности действия Ф. при повышении темп-ры сверх оптимальной объясняется гл. обр. начинающимся разрушением (денатурацией) входящего в состав Ф. белка. Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем белки оводнённые (в виде белкового геля или раствора), инактивирование Ф. в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких темп-р, чем те же споры или семена в увлажнённом состоянии.

Важнейшим фактором, от к-рого зависит действие Ф., как установил впервые С. Сёренсен, является активная реакция среды - рН. Отдельные Ф. различаются по оптимальной для их действия величине рН. Так, напр., пепсин, содержащийся в желудочном соке, наиболее активен в сильнокислой среде (рН 1-2); трипсин - протеолитич. Ф., выделяемый поджелудочной железой, имеет оптимум действия в слабощелочной среде (рН 8- 9); оптимум действия папаина - протеолитич. Ф. растит. происхождения - находится в слабокислой среде (рН 5-6). Действие Ф. зависит также от присутствия специфич. активаторов и неспецифич. или специфич. ингибиторов. Так, энтеро-киназа, выделяемая поджелудочной железой, превращает неактивный трипсино-ген в активный трипсин. Подобные неактивные Ф., содержащиеся в клетках и в секретах различных желез, наз. проферментами. Многие Ф. активируются в присутствии соединений, содержащих сульфгидрильную группу (- SH). К ним принадлежат аминокислота цистеин и трипептид глутатион, содержащийся в каждой живой клетке. Особенно сильное активирующее действие глутатион оказывает на нек-рые протеолитич. и окислительные Ф. Неспецифич. угнетение (ингибирование) Ф. происходит под действием различных веществ, дающих с белками нерастворимые осадки или блокирующих в них к.-л. группы (напр., SH-группы). Существуют более специ-

фич. ингибиторы Ф., угнетение к-рыми каталитич. функций основано на специфич. связывании этих ингибиторов с определёнными хим. группировками в активном центре Ф. Так, окись углерода (СО) специфически ингибирует ряд окислит. Ф., содержащих в активном центре железо или медь. Вступая в хим. соединение с этими металлами, она блокирует активный центр Ф. и вследствие этого он теряет свою активность. Различают обратимое и необратимое ингибирование Ф. В случае обратимого ингибирования (напр., действие малоновой к-ты на сукцинатдегидрогеназу) активность Ф. восстанавливается при удалении ингибитора диализом или иным способом. При необратимом ингибировании действие ингибитора, даже при очень низких его концентрациях, усиливается со временем и в конце концов наступает полное торможение активности Ф. Ингибирование Ф. может быть конкурентным и неконкурентным. При конкурентном ингибировании ингибитор и субстрат конкурируют между собой, стремясь вытеснить один другого из фермент-субстратного комплекса. Действие конкурентного ингибитора снимается высокими концентрациями субстрата, в то время как действие неконкурентного ингибитора в этих условиях сохраняется. Действие на Ф. специфич. активаторов и ингибиторов имеет большое значение для регулирования ферментативных процессов в организме.

Классификация и номенклатура ферментов. По рекомендации Международного биохим. союза, Ф. разделяют на 6 классов: 1) оксидоредуктазы, 2) транс-феразы, 3) гидролазы, 4) лиазы, 5) изо-меразы, 6) лигазы. Рекомендована следующая нумерация Ф. Шифр (индекс) каждого Ф. содержит 4 числа, разделённых точками. Первая цифра указывает класс, вторая - подкласс, третья - под-подкласс, четвёртая - порядковый номер в данном подподклассе. Так, Ф. аргиназа, расщепляющий аргинин на орнитин и мочевину, имеет шифр 3.5.3.1, т. е. относится к классу гидролаз, подклассу Ф., действующих на непептидные С - N-связи, иподподклассу Ф., расщепляющих эти связи в линейных (не циклических) соединениях.

Класс оксидоредуктаз включает Ф., катализирующие окислительно-восстановит. реакции, и разделяется на 14 подклассов в зависимости от природы той группы в молекуле субстрата, к-рая подвергается окислению (спиртовая, альдегидная, кетонная и т. д.). Подподклас-сы оксидоредуктаз индексируются в зависимости от типа участвующего в реакции акцептора водорода (электронов) - ко-фермента, цитохрома, молекулярного кислорода и т. д. Т. о., первые три цифры шифра определяют тип Ф., так, напр., 1.2.3 обозначают оксидоредуктазу, действующую на альдегид с молекулярным кислородом в качестве акцептора электронов. Класс трансфераз, объединяющий Ф., катализирующие реакции переноса групп, подразделяется на

8 подклассов в зависимости от природы переносимых групп, к-рыми могут быть од-ноуглеродные или гликозиль-ные остатки, азотистые или содержащие серу группы и т. д. У трансфераз третья цифра характеризует тип переносимых групп (напр., одноуглеродная группа может быть метилом, карбоксилом, форми-лом и т. д.). К гидролазам принадлежат Ф., катализирующие гидролитич. расщепление различных соединений; разделяются на 9 подклассов в зависимости от типа гидролизуемой связи - сложно-эфирной, пептидной, гликозидной и т. д. Третья цифра у гидролаз уточняет тип гидролизуемой связи. Лиазы - Ф., отщепляющие от субстрата ту или иную группу (негидролитич. путями) с образованием двойной связи или, наоборот, присоединяющие группы к двойным связям. У лиаз 5 подклассов, вторая цифра шифра обозначает тип подвергающейся разрыву связи (углерод - углерод, углерод - кислород и т. д.), а третья - тип отщепляемой группы. Изомеразы, катализирующие реакции изомеризации, разделяются на 5 подклассов в зависимости от типа катализируемой реакции; третья цифра шифра детализирует характер превращения субстрата. Лигазами (или синтетазами) наз. Ф., к-рые катализируют соединение двух молекул, сопряжённое с расщеплением пирофосфатной связи в молекуле аденозинтрифосфорной к-ты (АТФ) или аналогичного трифосфата. Первая цифра шифра лигаз обозначает тип вновь образуемой связи (углерод - азот, углерод - кислород и т. д.), а вторая - природу образующегося соединения.

Классификация и номенклатура Ф., кроме шифра, включает также система-тич. и тривиальные (рабочие) названия. Так, напр., систематич. назв. карбокси-лаза 2-оксокислот соответствует уже упоминавшемуся тривиальному назв. пиру-ватдекарбоксилаза, а систематич. назв. L-аргинин - амидиногидролаза - рабочему назв. аргиназа.

Регуляция ферментативных процессов. Действие Ф. в организме осуществляется путём регуляции их синтеза и активности. Свойственный данному организму набор Ф. определяется его генетич. природой. Однако он может изменяться под влиянием различных внутр. и внеш. факторов - мутаций, действия ионизирующей радиации, состава газовой среды, условий питания и т. д. Так, в результате мутаций возникают т. н. "молекулярные болезни" (напр., алкаптонурия). При этом наследств. заболевании у больных с мочой выделяется гомогентизиновая к-та, образующаяся в результате превращений аминокислоты тирозина. Гомогентизиновая к-та накапливается в организме и выделяется с мочой вследствие того, что у больных алкаптонурией утеряна способность к синтезу двух Ф., катализирующих её дальнейшее окисление, - пара-оксифенилпируватоксидазы и оксидазы гомогентизиновой к-ты. Влияние условий питания организма на его ферментный аппарат особенно наглядно прослеживается у микроорганизмов. Напр., кишечная палочка при росте на питат. среде, содержащей глюкозу, синтезирует только следы в-галактозидазы. В присутствии же различных в-галакто-зидов образуются значит. кол-ва этого Ф.- до 6-1% от всех содержащихся в клетке белков. Ф., новообразование или усиление синтеза к-рых происходит под влиянием к.-л. соединения, наз. индуцируемыми ферментами. Под влиянием др. соединений может происходить подавление синтеза Ф., наз. репрессией. В животном организме индукция и репрессия синтеза Ф. осуществляется не только под влиянием соответствующих

субстратов и метаболитов, но и под влиянием гормонов. Так, синтез глюкозо-6-фосфатазы, принимающей участие в синтезе глюкозы в печени, индуцируется гормонами тироксином и кортизоном, но репрессируется инсулином. Общая теория индукции и репрессии биосинтеза на генетич. уровне дана франц. учёными Ф. Жакобом и Ж. Моно (см. Оперон). В одном организме один и тот же Ф. может быть представлен различными молекулярными формами. Такие разнообразные формы Ф., катализирующие одну и ту же реакцию, но различающиеся по физ., хим. и иммунологич. свойствам, наз. изоферментами. Синтез изоферментов определяется генетич. факторами, но может изменяться под влиянием условий существования организма. Т. о., факторы, от к-рых зависят концентрация и активность Ф. в организме, так же разнообразны, как и условия его существования. Это прежде всего водный, газовый, температурный, кислотный и световой режим среды, а также концентрация субстратов и различных кофакторов, необходимых для действия Ф., наличие активаторов и ингибиторов, концентрации метаболитов и, наконец, у высших многоклеточных организмов это нервная и гормональная регуляция ферментативной активности .

Примером влияния условий существования организма на активность Ф. может служить Постера эффект - прекращение брожения под действием кислорода. Активность многих Ф. регулируется по аллостерическому принципу. У таких Ф. имеется т. н. аллостерический центр, присоединяясь к к-рому определённый метаболит - эффектор вызывает изменение структуры активного центра, вследствие чего активность Ф. снижается или повышается.

Нек-рые Ф. находятся в клетке в виде многоферментных комплексов. В таких многоферментных ансамблях активность каждого отдельного Ф. строго координирована и регулируется др. Ф., входящими в состав данного комплекса. Примером многоферментного комплекса может служить пируватдегидрогеназа, состоящая из 16 молекул пируватдекарбо-ксилазы, 8 молекул дигидролипоилдегидрогеназы и 4 агрегатов липоат-ацетил-трансферазы, каждая из к-рых состоит из 16 субъединиц. Решающую роль в регуляции активности Ф. в клетке играют различные субклеточные структуры - митохондрии, микросомы, лизосомы и т. д., и белково-липидные мембраны, отделяющие их от цитоплазмы. Многие Ф. вмонтированы в этих мембранах в виде многоферментных ансамблей.

Практическое значение ферментов. Ферментативные процессы являются основой мн. произ-в: хлебопечения, виноделия, пивоварения, сыроделия, произ-ва спирта, чая, уксуса. С нач. 20 в. по предложению япон. учёного Д. Такамине в спиртовой и др. отраслях пром-сти началось применение ферментных препаратов, получаемых из плесневых грибов или бактерий. В ряде стран этот способ широко используется для осахаривания с помощью амилаз крахмалистого сырья с целью получения кристаллич. глюкозы или его сбраживания на спирт. Концентрированные амилолитич. препараты Ф. из плесневых грибов при добавке в тесто приводят к улучшению качества хлеба и ускорению технологич. процесса. Препараты протеолитич. Ф., получаемых из микроорганизмов, употребляются в кож. пром-сти для удаления волос и мягчения сырья, а в сыродельной пром-сти - для замены дефицитного сычужного фермента (реннина). Препараты микробных пектолитич. Ф. широко используют при производстве соков (выход плодового сока повышается на 10- 20% ). Всё большее применение очищенные ферментные препараты находят в медицине. В науч. исследованиях и в кли-нич. практике высокоочищенные ферментные препараты служат в качестве специфич. средств биохим. анализа (см. Ферментативные методы анализа). Весьма перспективно применение т. н. иммобилизованных Ф., к-рые связываются к.-л. носителем, образующим с данным Ф. нерастворимый комплекс. При подборе соответствующего носителя можно получить иммобилизованный Ф. с высокой активностью, устойчивый по отношению к денатурирующим агентам. Колонка, заполненная иммобилизованным Ф., может быть многократно использована для проведения соответствующей реакции. Иммобилизованные Ф. находят всё более широкое применение в аналитич. практике и биохим. технологии.

Лит.: Ферменты, М., 1964; Диксон М., Уэбб Э., Ферменты, пер. с англ., М., 1966; Номенклатура ферментов, пер. с англ., М., 1966; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Структура и функция ферментов, в. 1- 2, М., 1972-73; Фениксова Р. В., Биохимические основы получения и применения ферментных препаратов, в кн.: Техническая биохимия, М., 1973; Кретович В. Л., Введение в эн-зимологию, 2 изд., М., 1974; Аллостерические ферменты, М., 1975; Ферменты медицинского назначения. Л., 1975; Ферментные препараты в пищевой промышленности, М., 1975; Advances in enzymology and related areas of molecular biology, v. 1 - 43, N. Y., 1941 - 75; Methods in enzymology, v. 1 - 36, N. Y., 1955-75. В. Л. Кретович.




Смотреть больше слов в «Большой советской энциклопедии»

ФЕРМЕР →← ФЕРМЕНТОПАТИИ

Синонимы слова "ФЕРМЕНТЫ":

Смотреть что такое ФЕРМЕНТЫ в других словарях:

ФЕРМЕНТЫ

(хим.) — см. Энзимы. Ферменты (бродила) — производители разных форм брожений; делятся на Ф. неорганизованные и организованные. К первым относится вся к... смотреть

ФЕРМЕНТЫ

(от лат. fermentum – закваска)        энзимы, специфические белковые катализаторы, присутствующие во всех живых клетках. Почти все биохимические реакци... смотреть

ФЕРМЕНТЫ

ферменты сущ., кол-во синонимов: 2 • биокатализаторы (1) • энзимы (2) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: биокатализаторы, энзимы... смотреть

ФЕРМЕНТЫ

Ферменты (хим.) — см. Энзимы. Ферменты (бродила) — производители разных форм брожений; делятся на Ф. неорганизованные и организованные. К первым относи... смотреть

ФЕРМЕНТЫ

органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом хими... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫорганические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum - брожение, закваска) иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология.Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л.Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э.Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж.Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать "универсальные" ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.Ферменты как белки. Все ферменты являются белками, простыми или сложными (т.е. содержащими наряду с белковым компонентом небелковую часть). См. также БЕЛКИ.Ферменты - крупные молекулы, их молекулярные массы лежат в диапазоне от 10 000 до более 1 000 000 дальтон (Да). Для сравнения укажем мол. массы известных веществ: глюкоза - 180, диоксид углерода - 44, аминокислоты - от 75 до 204 Да. Ферменты, катализирующие одинаковые химические реакции, но выделенные из клеток разных типов, различаются по свойствам и составу, однако обычно обладают определенным сходством структуры.Структурные особенности ферментов, необходимые для их функционирования, легко утрачиваются. Так, при нагревании происходит перестройка белковой цепи, сопровождающаяся потерей каталитической активности. Важны также щелочные или кислотные свойства раствора. Большинство ферментов лучше всего "работают" в растворах, pH которых близок к 7, когда концентрация ионов H+ и OH- примерно одинакова. Связано это с тем, что структура белковых молекул, а следовательно, и активность ферментов сильно зависят от концентрации ионов водорода в среде.Не все белки, присутствующие в живых организмах, являются ферментами. Так, иную функцию выполняют структурные белки, многие специфические белки крови, белковые гормоны и т.д.Коферменты и субстраты. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами). Роль коферментов играют большинство витаминов и многие минеральные вещества; именно поэтому они должны поступать в организм с пищей. Витамины РР (никотиновая кислота, или ниацин) и рибофлавин, например, входят в состав коферментов, необходимых для функционирования дегидрогеназ. Цинк - кофермент карбоангидразы, фермента, катализирующего высвобождение из крови диоксида углерода, который удаляется из организма вместе с выдыхаемым воздухом. Железо и медь служат компонентами дыхательного фермента цитохромоксидазы.Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента. Этот процесс представляют следующим образом:Продукт тоже можно считать субстратом, поскольку все ферментативные реакции в той или иной степени обратимы. Правда, обычно равновесие сдвинуто в сторону образования продукта, и обратную реакцию бывает трудно зафиксировать.Механизм действия ферментов. Скорость ферментативной реакции зависит от концентрации субстрата и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке. Кроме того, биохимики исследуют процессы, достигшие стационарного состояния, при котором образование фермент-субстратного комплекса уравновешивается его превращением в продукт. В этих условиях зависимость скорости (v) ферментативного превращения субстрата от его концентрации описывается уравнением Михаэлиса - Ментен:где KM - константа Михаэлиса, характеризующая активность фермента, V - максимальная скорость реакции при данной суммарной концентрации фермента. Из этого уравнения следует, что при малых скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от - наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом.Выяснение механизмов действия ферментов во всех деталях - дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат. Эти центры высокоспецифичны, т.е. "узнают" только "свой" субстрат или близкородственные соединения. Активный центр формируют особые химические группы в молекуле фермента, ориентированные друг относительно друга определенным образом. Происходящая так легко потеря ферментативной активности связана именно с изменением взаимной ориентации этих групп. Молекула субстрата, связанного с ферментом, претерпевает изменения, в результате которых разрываются одни и образуются другие химические связи. Чтобы этот процесс произошел, необходима энергия; роль фермента состоит в снижении энергетического барьера, который нужно преодолеть субстрату для превращения в продукт. Как именно обеспечивается такое снижение - до конца не установлено.Ферментативные реакции и энергия. Высвобождение энергии при метаболизме питательных веществ, например при окислении шестиуглеродного сахара глюкозы с образованием диоксида углерода и воды, происходит в результате последовательных согласованных ферментативных реакций. В животных клетках в превращениях глюкозы в пировиноградную кислоту (пируват) или молочную кислоту (лактат) участвуют 10 разных ферментов. Этот процесс называется гликолизом. Первая реакция - фосфорилирование глюкозы - требует участия АТФ. На превращение каждой молекулы глюкозы в две молекулы пировиноградной кислоты расходуются две молекулы АТФ, но при этом на промежуточных этапах из аденозиндифосфата (АДФ) образуются 4 молекулы АТФ, так что весь процесс в целом дает 2 молекулы АТФ.Далее пировиноградная кислота окисляется до диоксида углерода и воды при участии ферментов, ассоциированных с митохондриями. Эти превращения образуют цикл, называемый циклом трикарбоновых кислот, или циклом лимонной кислоты. См. также МЕТАБОЛИЗМ.Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам. В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента (никотинамиддинуклеотида, обозначаемого НАД), а другие окисляют восстановленный кофермент (НАД?Н), восстанавливая другие дыхательные ферменты, в том числе цитохромы (железосодержащие гемопротеины), в которых атом железа попеременно то окисляется, то восстанавливается. В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара (окисление кислородом воздуха), входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами.На отдельных этапах окисления энергия, заключенная в питательных веществах, высвобождается в основном маленькими порциями и может запасаться в фосфатных связях АТФ. В этом принимают участие замечательные ферменты, которые сопрягают окислительные реакции (дающие энергию) с реакциями образования АТФ (запасающими энергию). Этот процесс сопряжения известен как окислительное фосфорилирование. Не будь сопряженных ферментативных реакций, жизнь в известных нам формах была бы невозможна.Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы. Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ.Ферменты и пищеварение. Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника.Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов.Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса. Ферменты добавляют также в стиральные порошки.Ферменты в медицине и сельском хозяйстве. Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса.Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты.См. также:ФЕРМЕНТЫ: НЕКОТОРЫЕ ФЕРМЕНТЫ И КАТАЛИЗИРУЕМЫЕ ИМИ РЕАКЦИИФЕРМЕНТЫ: АТФ + Пировиноградная кислота Фосфоенолпировиноградная кислота + АДФ... смотреть

ФЕРМЕНТЫ

(лат. fermentum брожение, бродильное начало; синоним энзимы)специфические вещества белковой природы, присутствующие в тканях и клетках всех живых орган... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫ (от лат. fermentum — брожение, закваска), энзимы, биокатализаторы, специфич. белки, присутствующие во всех живых клетках и играющие роль биол... смотреть

ФЕРМЕНТЫ

(от лат. fermentum - закваска) (энзимы), белки, выполняющие роль катализаторов в живых организмах. Осн. ф-ции Ф.- ускорять превращение в-в, поступ... смотреть

ФЕРМЕНТЫ

ферме́нты (от лат. fermentum — брожение, закваска), энзимы, специфические белки, входящие в состав клеток и катализирующие химические реакции в организ... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫ(лат. Fermentum - закваска, от fervere - быть горячим). Органические вещества, производящие брожение других органических тел, не подвергаясь са... смотреть

ФЕРМЕНТЫ

(от лат. fermentum — брожение, закваска), энзимы, специфические белки всех живых клеток, играющие роль биол. катализаторов. Через их посредство осуществляется обмен в-в и энергии в организмах. Известно более 2000 Ф. Простые Ф. (пепсин, трипсин и др.) состоят только из белка, сложные — двухкомпонентные и многокомпонентные — включают наряду с белковой частью (апоферментом) термостабильные небелковые органич. молекулы-коферменты. Мн. коферменты — производные витаминов. Мол. масса Ф. от неск. тыс. до неск. млн. В клетках Ф. растворены в цитоплазме или прочно связаны с субклеточными структурами, вмонтированы в мембраны. По сравнению с хим. катализаторами гл. преимущество Ф. — высокая активность (в присутствии Ф. скорость реакций увеличивается в 10<sup>10</sup> — 10<sup>13</sup> раз) и субстратная специфичность.Связывание и превращение субстрата происходит в специфич. участках Ф. — активных центрах, к-рые обладают сродством только к определ. субстратам. <p>Активность Ф. зависит от концентрации продуктов и субстратов, рН среды, темп-ры, а также от присутствия активаторов или ангибиторов. На специфич. ингибировании Ф. патогенных микроорганизмов основано действие мн. лек. препаратов. В зависимости от типа реакции, к-рую они катализируют, Ф. подразделяют на 6 классов: оксидоредуктазы, трансферазы, гидролазы, изомеразы, лиазы, лигазы. Ферментативные процессы — основа хлебопечения, виноделия, пивоварения, сыроделия, получения чая, табака, а также уксуса, спирта и ряда др. в-в. Ферментные препараты, получаемые из культур микроорганизмов, растит. и животных тканей, а также отходы ферментной пром-сти (биомасса, биошрот), содержащие, кроме Ф., питат. в-ва, добавляют в корма для повышения продуктивности с.-х. ж-ных. При силосовании кормов в качестве ферментных препаратов используют целые микробные клетки — закваску молочнокислых бактерий. Высокоочищенные Ф. — пепсин, трипсин и др. — применяют как лек. средства в ветеринарии. На основе азот-фиксирующих бактерий, обладающих Ф. нитрогеназой, выпускают удобрения для с. х-ва.</p> <br><b>Синонимы</b>: <div class="tags_list"> биокатализаторы, энзимы </div><br><br>... смотреть

ФЕРМЕНТЫ

(лат. fermentum закваска) - энзимы, специфические белковые катализаторы, присутствующие во всех живых клетках. Почти все биохимические реакции, протека... смотреть

ФЕРМЕНТЫ

энзимы, сложные органические вещества, образующиеся в различных железах жив. и в клетках раст., способные даже в незначительных количествах ускорять хи... смотреть

ФЕРМЕНТЫ

ы) (лат. в, внутри + гр. закваска) — биологические катализаторы, по химической природе — белки (см. Белок), иногда рибонуклеиновые кислоты (см. РНК), обязательно присутствующие во всех клетках живого организма. Убыстряя превращения веществ (биохимические реакции), направляют и регулируют обмен веществ. Ферменты имеют наивысшую активность при определенной кислотности среды, наличии необходимых коферментов и кофакторов, при отсутствии ингибиторов (вещества, снижающие скорость химических, ферментативных реакций или подавляющие их). Поскольку каждый из ферментов катализирует лишь небольшое число веществ (иногда даже одно вещество, изменяя его только в одном направлении), биохимические реакции в клетках идут при участии огромного числа ферментов. Отличие ферментов от химических катализаторов — способность ускорять реакции при обычных условиях: атмосферном давлении, температуре тела организма и т. п. Ферменты снижают энергию активации, т. е. уровень энергии, необходимой для придания молекуле реакционной способности. ... смотреть

ФЕРМЕНТЫ

[fermentum — закваска] — биокатализаторы белковой природы, вырабатываемые живыми организмами и выполняющие в них важнейшие физиологические функции в ... смотреть

ФЕРМЕНТЫ

Ферменты (от лат. fermentum - закваска), энзимы - присутствующие во всех живых клетках белковые катализаторы реакций обмена веществ. Разделяются на э... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫ (от лат . fermentum - закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.<br><br><br>... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫ (от лат. fermentum - закваска) (энзимы) - биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.<br>... смотреть

ФЕРМЕНТЫ

(от лат. fermentum - закваска) (энзимы), биол. катализаторы, присутствующие во всех живых клетках. Осуществляют превращения в-в в организме, направляя ... смотреть

ФЕРМЕНТЫ

- (от лат. fermentum - закваска) (энзимы) - биологическиекатализаторы, присутствующие во всех живых клетках. Осуществляютпревращения веществ в организме, направляя и регулируя тем самым его обменвеществ. По химической природе - белки. Ферменты обладают оптимальнойактивностью при определенном рН, наличии необходимых коферментов икофакторов, отсутствии ингибиторов. Каждый вид ферментов катализируетпревращение определенных веществ (субстратов), иногда лишь единственноговещества в единственном направлении. Поэтому многочисленные биохимическиереакции в клетках осуществляет огромное число различных ферментов. Всеферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы,гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живыхклеток и получены в кристаллическом виде (впервые в 1926). Ферментныепрепараты применяют в медицине, в пищевой и легкой промышленности.... смотреть

ФЕРМЕНТЫ

"...Ферменты представляют собой органические вещества, производимые живыми клетками, они инициируют и регулируют специфические химические реакции внутр... смотреть

ФЕРМЕНТЫ

ФЕРМЕНТЫ (от латинского fermentum - закваска), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения (обмен) веществ в организме. По химической природе - белки. В многочисленных биохимических реакциях в клетке участвует огромное число различных ферментов. В зависимости от типа химической реакции, катализируемой ферментами, их делят на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Ферментные препараты применяют в медицине, пищевой и легкой промышленности. <br>... смотреть

ФЕРМЕНТЫ

(от латинского fermentum - закваска), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения (обмен) веществ в организме. По химической природе - белки. В многочисленных биохимических реакциях в клетке участвует огромное число различных ферментов. В зависимости от типа химической реакции, катализируемой ферментами, их делят на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Ферментные препараты применяют в медицине, пищевой и легкой промышленности.... смотреть

ФЕРМЕНТЫ

-ов, мн. (ед. ферме́нт, -а, м.). биол., хим. Специфические белковые катализаторы, присутствующие во всех живых клетках, регулирующие обмен веществ и п... смотреть

ФЕРМЕНТЫ

ферменты.См. энзимы.(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)Сино... смотреть

ФЕРМЕНТЫ

корень - ФЕРМЕНТ; окончание - Ы; Основа слова: ФЕРМЕНТВычисленный способ образования слова: Бессуфиксальный или другой∩ - ФЕРМЕНТ; ⏰ - Ы; Слово Фермент... смотреть

ФЕРМЕНТЫ

(от лат. fermentum — закваска) — иначе энзимы, биокатализаторы, сложное органическое вещество белковой природы, содержащееся в животных и растительных организмах и в миллионы раз ускоряющее химические процессы в них. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: биокатализаторы, энзимы... смотреть

ФЕРМЕНТЫ

ферменты [< лат. fermentum закваска] - иначе энзимы, биокатализаторы - вещества белковой природы, присутствующие во всех живых клетках животных, растен... смотреть

ФЕРМЕНТЫ

(лат. fermentum – закваска) – биокатализаторы, вещества белковой природы, присутствующие во всех живых клетках животных, растений и микроорганизмов, направляющие, регулирующие и многократно ускоряющие соответствующие биохимические процессы. Играют важнейшую роль в обмене веществ. Синоним: Энзимы.... смотреть

ФЕРМЕНТЫ

— специфически действующие биологические катализаторы белковой природы, ускоряющие и направляющие все биохимические процессы в живых организмах. Синони... смотреть

ФЕРМЕНТЫ

м. мн. ч. enzymes ( см. тж фермент)— гликолитические ферменты - лизосомальные ферменты - липогенные ферменты - липолитические ферменты

ФЕРМЕНТЫ

(энзимы, биокатализаторы) специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов.

ФЕРМЕНТЫ

ферменты ферментҳо

ФЕРМЕНТЫ

ферменттер

ФЕРМЕНТЫ

ферменттер

ФЕРМЕНТЫ АБДЕРГАЛЬДЕНА

(в плазме крови и моче при цистинозе) ferments de défense d'Abderhalden

ФЕРМЕНТЫ АЛЛОСТЕРИЧЕСКИЕ

ферменты аллостерические ферменты, обладающие наряду с активным центром регуляторным, или аллостерическим, центром, за счет которого под воздействием ... смотреть

ФЕРМЕНТЫ (БРОДИЛА)

производители разных форм брожений; делятся на Ф. неорганизованные и организованные. К первым относится вся категория бродил, которые могут быть выделе... смотреть

ФЕРМЕНТЫ ВИРУСОВ

Ферменты вирусовв составе вирионов многих, особенно сложных вирусов, содержатся ДНК- и РНК-полимеразы, ферменты, разрушающие оболочку клетки-хозяина, м... смотреть

ФЕРМЕНТЫ ДЛЯ ИССЛЕДОВАНИЯ СТРУКТУРЫ

(нуклеиновых кислот)structure probing enzymes

ФЕРМЕНТЫ ДЛЯ СЕКВЕНИРОВАНИЯ

(нуклеиновых кислот)sequencing enzymes

ФЕРМЕНТЫ ЖЕЛТЫЕ

(устар.) см. Флавопротеиды.

ФЕРМЕНТЫ ИНДУЦИБЕЛЬНЫЕ

ферменты индуцибельные ферменты ИНДУЦИРУЕМЫЕ – ферменты, скорость синтеза которых изменяется в зависимости от условий существования организма. Регуляц... смотреть

ФЕРМЕНТЫ КОНСТИТУТИВНЫЕ

ферменты конститутивные ферменты, постоянно синтезирующиеся организмом независимо от условий существования или наличия соответствующих субстратов. Ср.... смотреть

ФЕРМЕНТЫ МИКРООРГАНИЗМОВ

Ферменты микроорганизмовструктуры, св-ва, синтез, функция и классификация Ф.м. такие же, как у более сложных организмов. Одной из особенностей Ф.м. явл... смотреть

ФЕРМЕНТЫ ОДНОКОМПОНЕНТНЫЕ

бір құрамдасты ферменттер

ФЕРМЕНТЫ ОКИСЛИТЕЛЬНЫЕ

тотықтырғыш ферменттер

ФЕРМЕНТЫ (ОТ ЛАТ . FERMENTUM ЗАКВАСКА) (ЭНЗИМЫ)

ФЕРМЕНТЫ (от лат . fermentum - закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.... смотреть

ФЕРМЕНТЫ (ОТ ЛАТ. FERMENTUM ЗАКВАСКА) (ЭНЗИМЫ)

ФЕРМЕНТЫ (от лат. fermentum - закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.... смотреть

ФЕРМЕНТЫ ПИЩЕВАРИТЕЛЬНЫЕ

общее название Ф., участвующих в процессах расщепления пищевых веществ (у человека - в просвете пищеварительного тракта).

ФЕРМЕНТЫ ПРОТЕОЛИТИЧЕСКИЕ

протеолиттік ферменттер

ФЕРМЕНТЫ ПРОТЕОЛИТИЧЕСКИЕ

(син. протеазы) Ф. класса гидролаз (КФ 3.4.21-24), катализирующие расщепление белков и пептидов по пептидным связям; участвуют в процессах белкового обмена в организме.... смотреть

T: 181