ЭЛЕКТРОННЫЕ ПРИБОРЫ

ЭЛЕКТРОННЫЕ ПРИБОРЫ, приборы для преобразования электромагнитной энергии одного вида в электромагнитную энергию др. вида, осуществляемого посредством взаимодействия электронов (движущихся в вакууме, газе или полупроводнике) с электромагнитными полями. К Э. п. относятся электровакуумные приборы (кроме ламп накаливания) и полупроводниковые приборы.

Протекающие в Э. п. процессы чрезвычайно разнообразны. Так, в электронных лампах и вакуумных приборах СВЧ (клистронах, магнетронах, лампах бегущей волны и т. д.) электроны, испускаемые катодом, взаимодействуют с постоянным и переменным электрич. полями. В результате взаимодействия с постоянным полем кинетич. энергия электронов увеличивается; в результате взаимодействия с переменным полем постоянный электронный поток превращается в переменный и часть кинетич. энергии электронов преобразуется в энергию электрич. колебаний. В вакуумных индикаторах и электроннолучевых приборах электроны ускоряются постоянным электрич. полем и бомбардируют мишень (напр., экран, покрытый люминофором); при взаимодействии электронов с мишенью часть их кинетич. энергии преобразуется в электромагнитную энергию (напр., световую). В вакуумных фотоэлектронных приборах (вакуумных фотоэлементах, фотоэлектронных умножителях и др.) электроны, эмиттируемые фотокатодом под действием оптич. излучения, ускоряются постоянным электрич. полем и направляются на анод. В результате энергия оптич. излучения преобразуется в энергию электрич. тока, текущего в анодной цепи такого Э. п. В рентгеновских трубках энергия электронов, ускоренных на пути от катода к аноду (антикатоду), при ударе электронов об анод частично преобразуется в энергию рентгеновского излучения. В ионных приборах (газоразрядных приборах) электроны, ускоренные постоянным электрич. полем, сталкиваются с молекулами газа и либо ионизируют их, либо переводят в возбуждённое состояние. Такие газоразрядные приборы, как ртутные вентили, газотроны, тиратроны, таситроны, по принципу преобразования энергии аналогичны электровакуумным диодам и триодам; осн. отличие состоит в том, что в газоразрядных приборах ионы газа нейтрализуют пространственный заряд потока электронов и этим обеспечивают прохождение через прибор огромных токов (напр., в ртутных вентилях - до тысяч а) при сравнительно малых анодных напряжениях (15- 20 в). В газоразрядных источниках света и индикаторах газоразрядных каждая возбуждённая молекула газа при переходе в равновесное состояние излучает световую энергию. В люминесцентных лампах световую энергию излучают молекулы люминофора, возбуждённые ультрафиолетовым излучением разряда. В квантовых газоразрядных приборах (газовых лазерах, квантовых стандартах частоты и др.) возбуждённые молекулы газа, взаимодействуя с электромагнитными колебаниями, усиливают их при своём переходе в невозбуждённое состояние.

Преобразование энергии в полупроводниковых приборах основано на том, что в полупроводнике, как и в вакууме, можно создавать постоянные электрич. поля и осуществлять управление движением носителей заряда. В основе работы полупроводниковых приборов лежат след, электронные процессы и явления: эффект односторонней проводимости при протекании тока через запирающий слой электронно-дырочного перехода (р - п-перехода) или потенциального барьера на границе металл-полупроводник (см. Шотки диод); туннельный эффект; явление лавинного размножения носителей в сильных электрич. полях; акусто-, оптико-, термоэлектрич. эффекты в ди-электрич. и полупроводниковых материалах и т. д. На использовании эффекта односторонней проводимости основана работа полупроводниковых диодов. В транзисторах для усиления электрич. колебаний используют т. н. транзисторный эффект - управление током запертого перехода с помощью тока отпертого перехода. В Ганна диодах и лавинно-пролётных полупроводниковых диодах лавинное умножение в р - я-переходах, обусловленное ударной ионизацией атомов носителями, используется для генерации электрич. колебаний. В светоизлучающих диодах электрич. энергия преобразуется в энергию оптич. излучения на основе явления инжекционной электролюминесценции.

Э. п. находят применение в радиотехнике, автоматике, связи, вычислит, технике, астрономии, физике, медицине и т. д.- практически во всех областях науки и техники. Мировая пром-сть ежегодно выпускает (70-е гг.) св. 10 млрд. Э. п. различных наименований.

Лит.: Власов В. Ф., Электронные и ионные приборы. 3 изд.. М., 1960; К у ш м а н о в И. В., Васильев Н. Н., Л е-о н т ь е в А. Г., Электронные приборы, М , 1973. , В. Ф. Коваленко.




Смотреть больше слов в «Большой советской энциклопедии»

ЭЛЕКТРОННЫЕ ПРИЗМЫ →← ЭЛЕКТРОННЫЕ ЛИНЗЫ

Смотреть что такое ЭЛЕКТРОННЫЕ ПРИБОРЫ в других словарях:

ЭЛЕКТРОННЫЕ ПРИБОРЫ

        приборы для преобразования электромагнитной энергии одного вида в электромагнитную энергию другого вида, осуществляемого посредством взаимодейс... смотреть

ЭЛЕКТРОННЫЕ ПРИБОРЫ

приборы для различ. рода преобразований эл.-магн. энергии (генерации, усиления, модуляции и др.). Различают электровакуумные (электронные лампы, магнет... смотреть

ЭЛЕКТРОННЫЕ ПРИБОРЫ

электровакуумные и полупроводниковые приборы, предназначенные для генерирования, усиления, преобразования, модуляции электромагнитных колебаний. Примен... смотреть

ЭЛЕКТРОННЫЕ ПРИБОРЫ

ЭЛЕКТРОННЫЕ ПРИБОРЫ, см. в ст. Электроника, Электронная промышленность.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

ЭЛЕКТРОННЫЕ ПРИБОРЫ - см. в ст. Электроника, Электронная промышленность.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

ЭЛЕКТРОННЫЕ ПРИБОРЫ , см. в ст. Электроника, Электронная промышленность.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

ЭЛЕКТРОННЫЕ ПРИБОРЫ, см. в ст. Электроника, Электронная промышленность.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

- см. в ст. Электроника, Электронная промышленность.

ЭЛЕКТРОННЫЕ ПРИБОРЫ

электронды аспаптар

T: 194