ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ И УСИЛЕНИЕЭЛЕКТРИЧЕСКИХ КОЛЕБАНИИ

ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ И УСИЛЕНИЕ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИИ, метод возбуждения и усиления электромагнитных колебаний, в к-ром усиление мощности происходит за счёт энергии, затрачиваемой на периодич. изменение величины реактивного параметра (индуктивности L или ёмкости С) колебательной системы. На возможность использования параметрич. явлений для усиления и генерации электрич. колебаний впервые указали Л. И. Мандельштам и Н. Д. Папалекси, однако практич. применение параметрич. метод нашёл лишь в 50-е гг. 20 в., когда были созданы параметрические полупроводниковые диоды с управляемой ёмкостью и разработаны малошумящие параметрические усилители СВЧ.

Рассмотрим принцип параметрич. усиления и генерации на примере простейшей системы - колебательного контура, состоящего из постоянных сопротивления R, индуктивности L и ёмкости С, к-рая периодич. изменяется во времени (рис. 1).

При резонансе (wc = wo = корень квадратный из 1/LC, где wc - частота усиливаемого сигнала, wo - собственная частота контура) заряд q на обкладках конденсатора изменяется по закону:

Рис. 1. Контур с периодически меняющейся ёмкостью С. Величина ёмкости равна Сo, когда пластины конденсатора сдвинуты (сплошные линии), и C1, когда они раздвинуты (пунктир).

Здесь Eo- амплитуда сигнала, Q = = (корень квадратный из L/C)/R - добротность контура. Электростатич. энергия W, запасаемая в конденсаторе, равна:

Из (2) видно, что W изменяется с частотой, равной удвоенной частоте сигнала. Если в момент, когда q = qо, ёмкость конденсатора С скачком изменить на дельту С (напр., раздвинуть пластины конденсатора), то заряд q не успеет измениться, а энергия W изменится на величину (если дельта С/С " 1):

Отсюда следует, что результирующее увеличение энергии в контуре при периодич. изменении С максимально, если уменьшать ёмкость в моменты, когда q максимально, а возвращать величину ёмкости к исходному значению при q = 0. Это означает, что если изменять С с частотой wн = 2wс и с определённой фазой (рис. 2), то устройство, изменяющее С, как бы "накачивает энергию" в контур дважды за период колебаний. Если, наоборот, увеличивать С в моменты миним. значений q, то колебания в контуре будут ослабляться. В более общем виде условие эффективной накачки имеет вид: wн = 2wс/n, где n = 1, 2, 3, ... и т. д. При n = 1 С изменяется каждые четверть периода сигнала (Тс/4), при больших n-через время, равное c/2.

Рис. 2. Связь между изменением напряжения на ёмкости и изменением величины ёмкости: а) напряжение усиливаемого сигнала на конденсаторе, когда величина ёмкости не меняется; о) увеличение напряжения сигнала на конденсаторе в процессе параметрического усиления; в) изменение ёмкости в процессе параметрического усиления; Тс и Тн - периоды колебаний усиливаемого сигнала и сигнала накачки.

Простейший одноконтурный параметрич. усилитель обычно представляет собой колебательную систему, где ёмкость С изменяется в результате воздействия гармонич. напряжения от генератора накачки на полупроводниковый параметрический диод, ёмкость к-рого зависит от величины приложенного к нему напряжения. Конструктивно параметрич. усилитель СВЧ представляет собой "волноводный крест" (рис. 3); по одному из волноводов (см. Радиоволновод) распространяется .усиливаемый сигнал, по другому - сигнал накачки. В пересечении волноводов помещается параметрич. диод. Коэфф. усиления по мощности приближённо равен:

где т = (Смакс -- Смин)/(Смакс + Смин)

Рис. 3. Одноконтурные параметрические усилители.

наз. глубиной изменения ёмкости. При (m/2) Q -" 1 коэфф. усиления неограниченно растёт, при (m/2) Q >=1 система превращается в параметрич. генератор (см. Параметрическое возбуждение колебаний). Осн. недостаток одноконтурного параметрич. усилителя - зависимость Кус от соотношения между фазами усиливаемого сигнала и сигнала накачки.

Этого недостатка нет у параметрич. усилителей, содержащих два контура и больше (рис. 4). В двухконтурном параметрич. усилителе частота и фаза колебаний во втором ("холостом") контуре автоматически устанавливаются так, чтобы удовлетворить условиям эффективной накачки энергии. Если холостой контур настроен на частоту w2 =wн- wс, то

Рис. 4. Схема двухконтурного параметрического усилителя.

энергия накачки расходуется на усиление колебаний в обоих контурах. В этом случае

и при

усилитель превращается в

генератор. Такой усилитель наз. регенеративным. Если усиленный сигнал снимается со второго контура регенеративного усилителя, то усилитель является также и преобразователем частоты. При w2 = wн + wс вся энергия накачки и энергия, накопленная в сигнальном контуре, переходят в энергию колебаний суммарной частоты wн + wс. Такой параметрический усилитель наз. н е-регенеративным усилителем-преобразователем. Он устойчив при любом т и имеет широкую полосу пропускания, но обладает малым Кус.

Кроме периодич. изменения ёмкости с помощью параметрич. диодов, применяются и др. виды параметрич. воздействия. Периодическое изменение индуктивности L осуществляют, используя изменение эквивалентной индуктивности у ферритов и сверхпроводников. Периодич. изменение ёмкости С получают, используя зависимость диэлектрич. проницаемости диэлектриков от электрич. поля, структуры металл - окисел - полупроводник (поверхностные варакторы) и др. методами (см. Криоэлектроника). В электроннолучевых параметрич. усилителях используются нелинейные свойства электронного луча, модулированного по плотности.

Наряду с резонаторными параметрич. усилителями применяются параметрич. усилители бегущей волны. Электромагнитная волна сигнала, распространяясь по волноводу, последовательно взаимодействует с каждым из расположенных на пути параметрич. диодов (или др. нелинейных элементов).

Рис. 5. Параметрический усилитель бегущей волны.

Ёмкость диодов изменяется за счёт подводимой к резонаторам энергии накачки. При правильно подобранных частотах, длинах волн и направлении распространения волн накачки и сигнала усиление сигнала экспоненциально нарастает по мере его распространения вдоль цепочки диодов (рис. 5). В параметрич. усилителях бегущей волны можно получить полосу частот, достигающую 25% несущей частоты (у резонаторных - неск. % ).

Лит.: Мандельштам Л. И., Поля, собр. трудов, т. 2, М.- Л., 1947; Эткин В. С., Гершензон Е. М., Параметрические системы СВЧ на полупроводниковых диодах, М., 1964; Регенеративные полупроводниковые параметрические усилители (некоторые вопросы теории и расчета), М., 1965; Каплан А. Е., Кравцов Ю. А., Рылов В. А., Параметрические генераторы и делители частоты, М., 1966; Лопухин В. М., Рошаль А. С., Электроннолучевые параметрические усилители, М., 1968. В. И. Зубков.




Смотреть больше слов в «Большой советской энциклопедии»

ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ КОЛЕБАНИЙ →← ПАРАМЕТРИЧЕСКОЕ БУРЕНИЕ

T: 41