ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК

ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК, газоразрядный прибор для регистрации ионизирующих излучений, создающий сигнал, амплитуда к-рого пропорциональна энергии регистрируемой частицы, теряемой в его объеме на ионизацию. Заряженная частица, проходя через газ, наполняющий П. с., создаёт на своём пути пары ион - электрон, число к-рых зависит от энергии, терямой частицей в газе. При полном торможении частицы в П. с. импульс пропорционален энергии частицы. Как и в ионизационной камере, под действием электрич. поля электроны движутся к аноду, ионы - к катоду. В отличие от ионизационной камеры вблизи анода П. с. поле столь велико, что электроны приобретают энергию, достаточную для вторичной ионизации. В результате вместо каждого первичного электрона на анод приходит лавина электронов и полное число электронов, собранных на аноде П. с., во много раз превышает число первичных электронов. Отношение полного числа собранных электронов к первоначальному количеству наз. коэффициентом газового усиления (в формировании импульса участвуют также и ионы). В П. с. обычно катодом служит цилиндр, а анодом - тонкая (10-100 мкм) металлич. нить, натянутая по оси цилиндра (см. рис.). Газовое усиление осуществляется вблизи анода на расстоянии, сравнимом с диаметром нити, а весь остальной путь электроны дрейфуют под действием поля без "размножения". П. с. заполняют инертными газами (рабочий газ не должен поглощать дрейфующие электроны) с добавлением небольшого количества многоатомных газов, к-рые поглощают фотоны, образующиеся в лавинах.

Типичные характеристики П. с.: коэфф. газового усиления ~ 103-104 (но может достигать 106 и больше); амплитуда импульса ~ 10-2 в при ёмкости П. с. ок. 20 пкф; развитие лавины происходит за время ~ 10-9-10-8сек, однако момент появления сигнала на выходе П. с. зависит от места прохождения ионизующей частицы, т. е. от времени дрейфа электронов до нити. При радиусе ~ 1 см и давлении ~ 1 атм время запаздывания сигнала относительно пролёта частицы ~ 10-6 сек. По энергетич. разрешению П. с. превосходит сцинтилляционный счётчик, но уступает полупроводниковому детектору. Однако П. с. позволяют работать в области энергий < 1 кэв, где полупроводниковые детекторы неприменимы.

П. с. используются для регистрации всех видов ионизирующих излучений. Существуют П. с. для регистрации а-частиц, электронов, осколков деления ядер и т. д., а также для нейтронов, гамма- и рентгеновских квантов. В последнем случае используются процессы взаимодействия нейтронов, у- и рентгеновских квантов с наполняющим счётчик газом, в результате к-рых образуются регистрируемые П. с. вторичные заряженные частицы (см. Нейтронные детекторы). П. с. сыграл важную роль в ядерной физике 30-40-х гг. 20 в., являясь наряду с ионизационной камерой практически единственным спектрометрич. детектором.

Второе рождение П. с. получил в физике частиц высоких энергий в конце 60-х гг. в виде пропорциональной камеры, состоящей из большого числа (102-103) П. с., расположенных в одной плоскости и в одном газовом объёме. Такое устройство позволяет не только измерять ионизацию частицы в каждом отдельном счётчике, но и фиксировать место её прохождения. Типичные параметры пропорциональных камер: расстояние между соседними анодными нитями ~ 1-2 мм, расстояние между анодной и катодной плоскостями ~1 см; разрешающее время ~ 10-7 сек. Развитие микроэлектроники и внедрение в экспериментальную технику ЭВМ позводили создать системы, состоящие из десятков тыс. отдельных нитей, соединённых непосредственно с ЭВМ, к-рая запоминает и обрабатывает всю информацию от пропорциональной камеры. Т. о., она является одновременно быстродействующим спектрометром и трековым детектором.

В 70-х гг. появилась дрейфовая камера, в к-рой для измерения места пролёта частицы используется дрейф электронов, предшествующий образованию лавины. Чередуя аноды и катоды отдельных П. с. в одной плоскости и измеряя время дрейфа электронов, можно измерить место прохождения частицы через камеру с высокой точностью (~ 0,1 мм) при числе нитей в 10 раз меньше, чем в пропорциональной камере.

Схема пропорционального счётчика: а - область дрейфа электронов; б - область газового усиления.

П. с. применяются не только в ядерной физике, но и в физике космических лучей, астрофизике, в технике, медицине, геологии, археологии и т. д. Напр., с помощью установленного на "Луноходе-1" П. с. по рентгеновской флюоресценции производился химический элементный анализ вещества поверхности Луны.

Лит.: Векслер В., Грошев Л., Исаев Б., Ионизационные методы исследования излучений, М. - Л., 1949; Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]). В. С. Кафтанов, А. В. Стрелков.




Смотреть больше слов в «Большой советской энциклопедии»

ПРОПОРЦИЯ →← ПРОПОРЦИОНАЛЬНОСТЬ

Смотреть что такое ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК в других словарях:

ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК

        газоразрядный прибор для регистрации ионизирующих излучении (См. Ионизирующие излучения), создающий сигнал, амплитуда которого пропорциональна ... смотреть

ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК

газоразрядный детектор частиц, создающий сигнал, амплитуда к-рого пропорциональна энергии регистрируемой частицы. П. с.- цилиндрич. конденсатор с нитью... смотреть

ПРОПОРЦИОНАЛЬНЫЙ СЧЁТЧИК

пропорці́йний лічи́льник

T: 196