ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА, гироскопические приборы, электромеханич. устройства, содержащие гироскопы, и предназначенные для определения параметров, характеризующих движение (или положение) объекта, на к-ром они установлены, а также для стабилизации этого объекта. Г. у. используют при решении задач навигации, управления подвижными объектами и др.

Наиболее существенными признаками, характеризующими применяемые в технике разнообразные Г. у., являются: тип гироскопа, физич. принцип построения чувствит. гироскопич. элемента, тип подвеса, назначение Г. у.

Типы гироскопов. Различают два основных типа гироскопов: с тремя и двумя степенями свободы. Гироскопы с тремя степенями свободы делятся на уравновешенные, или астатические, и неуравновешенные, или позиционные.

Астатическим наз. гироскоп, у к-рого центр тяжести совпадает с точкой пересечения осей карданова подвеса (т. е. с точкой подвеса). Сила тяжести не влияет на движение оси такого гироскопа и её уходы при внеш. возмущениях могут вызываться лишь моментами сил в осях подвеса (моменты сил трения и др.). При отсутствии моментов внеш. сил гироскоп наз. свободным. Хотя астатич. гироскопы не обладают избирательностью по отношению к заданному направлению, т. е. "направляющей силой", стремящейся привести ось гироскопа в определ. положение, они используются в ряде Г. у., напр., в гироскопах направления, гировертикалях и др., причём прецизионные гироскопы могут применяться без корректирующих устройств.

Позиционным наз. гироскоп, обладающий избирательностью по отношению к нек-рому направлению; при отклонении его оси от этого направления возникает "направляющая сила", стремящаяся вернуть ось гироскопа в заданное положение. Для придания Г. у. позиционных свойств применяют два способа. Первый состоит в смещении центра тяжести гироскопа относительно точки подвеса. Он используется в гирокомпасах, у к-рых "направляющая сила" возникает при отклонении оси гироскопа от плоскости меридиана, ив гиромаятниках, у к-рых "направляющая сила" возникает при отклонении оси гироскопа от вертикали места. Др. способ состоит в применении астатич. гироскопа и соответствующей системы коррекции, напр, маятниковой (см. Гировертикаль).

Гироскопы с двумя степенями свободы используют в Г. у. чаще всего в качестве дифференцирующих и интегрирующих гироскопов, к-рые осуществляют дифференцирование (или интегрирование) входного сигнала, т. е. измеряют производную (или интеграл) от той величины, на воздействие к-рой реагирует Г. у. Напр., в гиротахометре дифференцирующий гироскоп, реагируя на поворот объекта, измеряет его угловую скорость, а поплавковый интегрирующий гироскоп (см. Гироскопический интегратор), реагируя на угловую скорость объекта, измеряет угол его поворота.

Физич. принципы построения чувствительных гироскопических элементов. Различают гироскопы с механич. ротором, с жидкостным ротором, вибрационные, лазерные, ядерные. Наиболее распространены гироскопы с механическим ротором: у них носителем кинетич. момента является быстро-вращающееся массивное твёрдое тело - ротор. Носителем кинетич. момента может быть и жидкая среда. Вибрационные гироскопы в качестве чувствит. элемента содержат вибрирующие массы (напр., ротор с упругим подвесом или упругие пластины) и служат для определения угловой скорости объекта. Лазерный гироскоп представляет собой устройство, в к-ром используется оптич. квантовый генератор направленного излучения и содержится плоский замкнутый контур (образованный тремя и более зеркалами), где циркулируют два встречных световых потока (луча); он также служит для определения угловой скорости объекта (см. Квантовый гироскоп). Ядерный гироскоп основан на том свойстве, что ядро атома содержит протоны, обладающие спиновыми и орбитальными моментами количества движения, а также связанными с ними магнитными моментами. При этом наличие механич. вращательного момента у ядра сообщает ему свойства гироскопа, а наличие магнитного момента даёт возможность ориентировать ось этого гироскопа в пространстве и определять её положение. Ядерные гироскопы могут использоваться в качестве стабилизаторов направления, датчиков угловых скоростей.

Типы подвесов гироскопов. В гироскопах с механическим ротором различают механический, поплавковый, газовый, магнитный, электростатический типы подвесов. В большинстве Г. у. используются гироскопы с механич. подвесом, выполненным в виде карданова подвеса (см. Гироскоп).

В различных двух- и трёхстепенных гироскопах для разгрузки механич.опор, применяются жидкостные, или поплавковые, подвесы (напр., в поплавковом интегрирующем гироскопе), вследствие чего подобные гироскопы мало подвержены вибрационным, ударным и др. возмущающим воздействиям и обладают высокой точностью.

Существенное повышение точности Г. у. достигается при применении гироскопов с газовым подвесом. Ротор такого, гироскопа обычно имеет сферич. форму и опирается на чрезвычайно тонкий газовый слой, образующийся между шаром-ротором и спец. опорой. Такой шар. является практически свободным гироскопом. Газовые опоры могут также применяться в осях подвеса ротора и кар-дановых колец.

В нек-рых Г. у. используется гироскоп; с магнитным подвесом, ротор к-рого, выполненный в виде ферритовой сферы, поддерживается магнитным полем во. взвешенном состоянии. Необходимые ха~ рактеристики поля автоматически регулируются спец. следящей системой. Другой разновидностью магнитного подвеса является т. н. криогенный подвес ротора, в к-ром используется взаимодействие магнитных полей, создаваемых токами в сверхпроводниках. Поддерживающие силы магнитного поля возникают при изменении положения ротора по отношению к элементам подвеса. Материал ротора, катушек электромагнитов и спец. экранов приводится в сверхпроводящее состояние путём глубокого охлаждения.

В гироскопе с электростатич. подвесом ротор представляет собой полую сферу, наружная поверхность к-рой имеет высокую проводимость. Ротор помещается между электродами, к к-рым подводится высокое напряжение, регулируемое спец. следящей системой. Под действием электростатич. сил ротор центрируется в пространстве между электродами.

Основные Г. у. По назначению Г. у. подразделяют на след, группы: 1) Г. у. для определения угловых отклонений объекта. Сюда относятся различные астатич. и позиц. гироскопы, а именно: гироскопы направления, определяющие азимутальные отклонения объекта (углы рыскания корабля или летат. аппарата), и гировертикали или гиромаятники,определяющие отклонения объекта относительно плоскости горизонта (углы килевой и бортовой качки, корабля, углы тангажа и крена летат. аппарата); 2) Г. у. для определения угловых скоростей и угловых ускорений объекта, в к-рых используются дифференцирующие гироскопы. К ним относятся гиротахометры и вибрационные гироскопы, определяющие угловые скорости вращения объекта и гиротахоакселерометры, определяющие угловые скорости и угловые ускорения вращения объекта; 3) Г. у. для определения интегралов от входных величин, в к-рых используются интегрирующие гироскопы: гироскопич. интеграторы угловых скоростей, определяющие углы отклонения объекта; интегро-дифференцирующие гироскопы, определяющие углы и угловые скорости вращения объекта, а также гироскопич. интеграторы линейных ускорений, к-рые служат для нахождения линейной скорости объекта; 4) Г. у. для стабилизации объекта или отд. приборов и устройств, а также для определения угловых отклонений объекта, наз. гироста-6илизаторами\ 5) Г. у. для решения навигационных задач. Сюда относятся: гирокомпасы, определяющие курс объекта и азимут (пеленг) ориентируемого направления; гиромагнитные компасы, определяющие магнитный курс объекта, гирошироты, предназначенные для определения широты места; гирошироткомпа-сы, с помощью к-рых определяются курс и широта местоположения объекта; гирогоризонткомпасы, служащие для определения курса объекта и углов отклонения его относительно плоскости горизонта; инерциальные навигационные системы, к-рые предназначены для нахождения ряда параметров, необходимых для навигации объектов; гироорбитанты, к-рые служат для определения углов рыскания, искусств, спутника Земли; гирорулевые, обеспечивающие автоматич. управление курсом корабля.

Г. у. применяют в морском флоте, авиации, ракетной и космич. технике, нар. х-ве для решения разнообразных задач навигации и управления подвижными объектами, а также при проведении нек-рых спец. работ (маркшейдерских, геодезич., топографич. и др.- см. Гиротеодолит).

Мит.: Крылов A. H., Общая теория гироскопов и некоторых технических их применений. Собр. трудов, т. 8, М.-Л., 1950; Булгаков Б. В., Прикладная теория гироскопов, 2 изд., M., 1955; Николаи E. Л., Теория гироскопов, Л. -M., 1948; Ишлинский А. Ю., Механика гироскопических систем, M., 1963; К у д-ревич Б. И., Теория гироскопических приборов, т. 1 - 2, Л., 1963 - 65; M е р-кин Д. Р., Гироскопические системы, M., 1956; Ройтенберг Я. H., Гироскопы, M., 1966; Граммель Р., Гироскоп, его теория и применения, пер. с нем., т. 1-2, M.,- 1952; Пельпор Д. С., Гироскопические приборы и автопилоты, M., 1964; Pивкин С. С., Теория гироскопических устройств, ч. 1 - 2, Л., 1962-64 (библ.). Л. Ю. Ишлинский, С. С. Ривкин.




Смотреть больше слов в «Большой советской энциклопедии»

ГИРОСКОПИЧЕСКИЙ ИНТЕГРАТОР →← ГИРОСКОП НАПРАВЛЕНИЯ

Смотреть что такое ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА в других словарях:

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

        гироскопические приборы, электромеханические устройства, содержащие Гироскопы, и предназначенные для определения параметров, характеризующих дв... смотреть

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

средства различ. назначения, основанные на использовании свойств гироскопа. Обычно включают один или неск. гироскопов и вспомог. устройства (корректиру... смотреть

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

Гироскопические устройства приборы и устройства, основанные на использовании свойств гироскопа. Предназначены для определения параметров, характеризую... смотреть

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

основаны иа использовании свойств гироскопа. Подразделяются на Г. у. для определения угловых отклонений объекта (гиро-азимуты, гировертикали, гирогори-... смотреть

ГИРОСКОПИЧЕСКИЕ УСТРОЙСТВА

см. Командно-измерительные приборы.

T: 9