Большая советская энциклопедия

ЭЛЕКТРОНОГРАФИЯ

ЭЛЕКТРОНОГРАФИЯ (от электрон и ...графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физ. основа Э.- дифракция электронов (см. Дифракция частиц); при прохождении через вещество электроны, обладающие волновыми свойствами (см. Кор-пускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и др. структурными параметрами. Рассеяние электронов в веществе определяется электроста-тич. потенциалом атомов, максимумы к-рого в кристалле отвечают положениям атомных ядер.

Электрон ографич. исследования проводятся в спец. приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрич. полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрич. устройством. В зависимости от величины электрич. напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от неск. в до сотен в).

Э. принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет ок. секунды, что позволяет исследовать структурные превращения, кристаллизацию и т. д. С др. стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв макс, толщина неск. ним).

Э. позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллич. состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в Э.).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллич. пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг (рис. 1). Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематич. съёмка) - параллельными линиями. Перечисл. типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков (рис. 2). Подобные электронограммы наз. кикучи-электронограммами (по имени получившего их впервые япон. физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллич. структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние а в кристалле определяется из соотношения:

d = LЛlr,

где L - расстояние от рассеивающего образца до фотопластинки, Л - деорой-левская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в Э. аналогичны применяемым в рентгеновском ‘структурном анализе (изменяются лишь нек-рые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Фhkl|. Распределение электростатич. потенциала ф(x, у,z) кристалла представляется в виде ряда Фурье:

(h, k, I - миллеровские индексы, О - объём элементарной ячейки). Макс, значения ф(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла (рис. 3). Т. о., расчёт значений ф(x, у, z), к-рый обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и т. п.

Методами Э. были определены мн. неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, молекулы нитридов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. можно также изучать строение дефектных структур. В комплексе с электронной микроскопией Э. позволяет изучать степень совершенства структуры тонких кристаллич. плёнок, используемых в различных областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, к-рый выполняется с помощью кикучи-электронограмм: даже незначит. нарушения её структуры приводят к размытию кикучи-линий.

На электронограммах, получаемых от газов, нет чётких рефлексов (т. к. объект не обладает строго периодич. структурой) и их интерпретация осуществляется др. методами.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале темп-р. Таким путём изучено строение мн. органич. молекул, структуры молекул галогенидов, окислов и др. соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стёклах и жидкостях.

При использовании медленных электронов их дифракция сопровождается эффектом Оже и др. явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Ожеспектроскопией для исследования атомной структуры адсорбированных слоев, напр, газов, и поверхностей кристаллов на глубину неск. атомных слоев (на 10- 30 А). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.

Лит.: П и н с к е р 3. Г., Дифракция электронов, М.- Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Звягин Б.Б., Электронография и структурная кристаллография глинистых минералов, М., 1964. 3. Г. Пинскер.

изучение атомной структуры молекул методом электронографии. Э. м. в газах и парах, а также электронография молекулярных кристаллов, аморфных тел и жидкостей позволила получить новые и уточнить имеющиеся данные о строении молекул мн. хим. соединений.





Смотреть другие описания