СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ, особое состояние квантовой жидкости, находясь в к-ром жидкость протекает через узкие щели и капилляры без трения; при этом протекающая часть жидкости обладает равной нулю энтропией. Единств. представителем семейства сверхтекучих жидкостей долгое время считался жидкий гелий 4Не, становящийся сверхтекучим ниже темп-ры ТЛ = 2,17 К (при давлении насыщенных паров ps = 37,8 мм рт. ст.). Сверхтекучий 4Не наз. Не II (см. Гелий). С. Не II была открыта П. Л. Капицей в 1938. В 1972-74 было установлено, что С. обладает также жидкий 3Не при темп-ре ниже Тс = 2,6 х 10-3 К на кривой плавления. Переход нормальных жидких 4Не и 3Не в сверхтекучее состояние представляет собой фазовый переход II рода.

Сверхтекучую жидкость нельзя представлять как жидкость, не обладающую вязкостью, т. к. эксперименты с крутильными колебаниями диска, погружённого в Не II, показали, что затухание колебаний при темп-ре, не слишком далёкой от ТЛ ("лямбда-точки"), мало отличается от затухания аналогичных колебаний в Не I, к-рый С. не обладает.

Теория сверхтекучести Не II. С. Не II была объяснена Л. Д. Ландау в 1941. Теория Ландау, получившая назв. двухжидкостной гидродинамики, основана на представлении о том, что при низких темп-pax свойства Не II как слабовозбуждённой квантовой системы обусловлены наличием в нём элементарных возбуждений, или квазичастиц. Согласно этой теории, Не II можно представить состоящим из двух взаимопроникающих компонент: нормальной и сверхтекучей.

Нормальная компонента при темп-рах, не слишком близких к Тл, представляет собой совокупность квазичастиц двух типов - фононов (квантов звука) и ротонов (квантов коротковолновых возбуждений, обладающих большей, чем у фононов, энергией). При Т=0 плотность нормальной компоненты рп = 0, поскольку при этом любая квантовая система находится в основном состоянии и возбуждения (квазичастицы) в ней отсутствуют. При темп-pax от абс. нуля до 1,7-1,8 К совокупность элементарных возбуждений в 4Не можно рассматривать как идеальный газ квазичастиц. С дальнейшим приближением к Тл из-за заметно усиливающегося взаимодействия квазичастиц модель идеального газа становится неприменимой. Взаимодействие квазичастиц между собой и со стенками сосуда обусловливает вязкость нормальной компоненты.

Остальная часть Не II - сверхтекучая компонента - вязкостью не обладает и поэтому свободно протекает через узкие щели и капилляры; её плотность рs=р-рп, где р- плотность жидкости. При Т=0, рS = р, при увеличении темп-ры концентрация квазичастиц растёт, поэтому рS уменьшается и, наконец, обращается в нуль при Т=ТЛ (С. в Л-точке исчезает, рис. 1). Согласно теории Ландау, жидкость перестаёт быть сверхтекучей и в случае, когда скорость её потока превышает критич. значение, при к-ром начинается спонтанное образование ротонов (см. Квантовая жидкость).

Рис. 1. Диаграмма, иллюстрирующая двухжидкостную модель Не II (Г - абсолютная темп-ра, рп/р - отношение плотности нормальной компоненты к плотности Не II).

При этом сверхтекучая компонента теряет импульс, равный импульсу испускаемых ротонов, и, следовательно, тормозится. Однако экспериментальное значение критической скорости существенно меньше той, к-рая требуется по теории Ландау для разрушения С.

С микроскопич. точки зрения появление С. в жидкости, состоящей из атомов с целым спином (бозонов), напр, атомов 4Не, связано с переходом при Т<ТЛ значит. числа атомов в состояние с нулевым импульсом. Это явление наз. Бозе -Эйнштейна конденсацией, а совокупность перешедших в новое состояние атомов - Бозе-конденсатом. Существование в Не II атомов, обладающих различным характером движения,- атомов конденсата и атомов, не вошедших в конденсат,-приводит к двухжидкостной гидродинамике Ландау (Н. Н. Боголюбов; 1947, 1963). Состояние всех частиц Бозе-кон-денсата описывается одной и той же квантовомеханической волновой функцией

(конденсатной функцией)

где по - плотность конденсата, фи - фаза волновой функции. В случае, если атомы слабо взаимодействуют между собой, п0 совпадает с ps. В Не II из-за сильного взаимодействия атомов по составляет при Т=0 лишь аеск. процентов ps. Скорость движения сверхтекучей компоненты vsсвязана с f (фи) соотношением vs = = (h‘/m) * (vf), где (vf) - градиент функции f (фи), m - масса атома 4Не, h‘ = h/2n и h - Планка постоянная, n - число "пи" Это означает, что сверхтекучая компонента движется потенциально (см. Потенциальное течение) и, следовательно, не испытывает сопротивления со стороны обтекаемых ею предметов и стенок канала или сосуда.

Потенциальность течения сверхтекучей компоненты может нарушаться на осях т. н. квантованных вихрей, к-рые отличаются от вихрей в обычных жидкостях (см. Вихревое движение) тем, что циркуляция скорости вокруг оси вихря квантуется (Л. Онсагер, 1948; Р. Фейнман, 1955). Квант циркуляции скорости равен h/m. Квантованные вихри осуществляют взаимодействие между сверхтекучей и нормальной компонентами сверхтекучей жидкости. Это взаимодействие приводит хотя и к слабому, но конечному затуханию потока сверхтекучей жидкости в замкнутом канале. При нек-рой скорости движения сверхтекучей компоненты относительно нормальной компоненты или стенок сосуда квантованные вихри начинают образовываться настрлько интенсивно, что свойство С. исчезает. В рамках этой теории С. пропадает при скоростях, существенно меньших предсказываемых теорией Ландау и более близких к реальным значениям критич. скорости. Квантованные вихри наблюдаются экспериментально при вращении сосуда с Не II. Кроме того, в экспериментах с ионами, инжектируемыми в Не II, обнаружены квантованные вихри, имеющие форму кольца.

Сверхтекучесть 3Не.

При определённых условиях С. может осуществляться и в системах, состоящих из атомов с полуцелым спином - фермионов (в т. н. ферми-жидкостях). Это происходит в том случае, когда между фермионами имеются силы притяжения, к-рые приводят к образованию связанных состояний пар фермионов, т. н. куперовских пар (см. Купера эффект). Куперовские пары обладают целым спином, поэтому могут образовывать Бозе-конденсат. С. такого рода осуществляется для электронов в нек-рых металлах и носит назв. сверхпроводимости. Аналогичная ситуация имеет место в жидком 3Не, атомы к-рого имеют спин 1/2 и образуют типичную квантовую ферми-жидкость. Свойства ферми-жид-кости можно описать как свойства газа квазичастиц-фермионов с эффективной массой примерно в 3 раза большей, чем масса атома 3Не. Силы притяжения между квази-частицами в 3Не очень малы, лишь при темп-pax порядка неск. мК в 3Не создаются условия для образования куперовских пар квазичастиц и возникновения С. Открытию С. у 3Не способствовало освоение эффективных методов получения низких температур - Померанчука эффекта и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3Не при сверхнизких темп-pax (рис. 2).

Рис. 2. Диаграмма состояния 3Не при низких температурах -абсолютная температура, р - давление).

В отличие от 4Не (см. рис. 1 к ст. Гелий), на диаграмме состояния 3Не обнаружены две сверхтекучие фазы и В). Переход нормальной ферми-жидкости в фазу А представляет собой фазовый переход II рода (теплота фазового перехода равна нулю). В фазе А образовавшиеся куперовские пары обладают спином 1 и отличным от нуля моментом импульса. В ней могут возникать области с общими для всех пар направлениями спинов и моментов импульса. Поэтому фаза А является анизотропной жидкостью. В магнитном поле фаза А расщепляется на две фазы 1и A2), каждая из которых также является анизотропной. Переход из сверхтекучей фазы А в сверхтекучую фазу В является фазовым переходом I рода с теплотой перехода ~1,5 х 10-6 дж/моль (15 эрг/моль). Магнитная восприимчивость 3Не при переходе А ->В скачком уменьшается и продолжает затем уменьшаться с понижением темп-ры. Фаза В является, по-видимому, изотропной.

Эффекты, сопутствующие сверхтекучести. В сверхтекучей жидкости, кроме обычного (первого) звука (колебаний плотности), может распространяться т. н. второй звук, представляющий собой звук в газе квазичастиц (колебания плотности квазичастиц, а следовательно, и темп-ры). Сверхтекучая жидкость обладает аномально высокой теплопроводностью, причиной к-рой является конвекция,- теплота переносится макроскопич. движением газа квазичастиц. При нагревании Не II в одном из сообщающихся (через капилляр) сосудов между сосудами возникает разность давлений (гермомеханич. эффект). Этот эффект объясняется тем, что в сосуде с большей темп-рой оказывается повышенной концентрация квазичастиц. Из-за того, что узкий капилляр не пропускает вязкого потока норм. компоненты, возникает избыточное давление газа квазичастиц, подобное осмотическому давлению в растворе. Существует и обратный - механокалорический - эффект: при быстром вытекании Не II через капилляр из сосуда темп-pa внутри сосуда повышается (в нём увеличивается концентрация квазичастиц), а вытекающий гелий охлаждается. Интересными свойствами обладает сверхтекучая плёнка гелия, образующаяся на твёрдой стенке сосуда. Так, напр., она может выравнивать уровни Не II в сосудах, имеющих общую стенку.

Лит.: Капица П. Л., Эксперимент, теория, практика, М., 1974; Халатников И. М., Фомин И. А., Сверхтекучесть и фазовые переходы в жидком гелии-3, "Природа", 1974, № 6; Халатников И. М., Теория сверхтекучести, М., 1971; Квантовые жидкости. Теория. Эксперимент, М., 1969; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; William Е., К е 1 1 е г, Helium-3 and Helium-4, N.-Y., 1969. Г. Е. Воловик.




Смотреть больше слов в «Большой советской энциклопедии»

СВЕРХТОНКАЯ СТРУКТУРА →← СВЕРХСКОРОСТНАЯ КИНОСЪЁМКА

Синонимы слова "СВЕРХТЕКУЧЕСТЬ":

Смотреть что такое СВЕРХТЕКУЧЕСТЬ в других словарях:

СВЕРХТЕКУЧЕСТЬ

        особое состояние квантовой жидкости (См. Квантовая жидкость), находясь в котором жидкость протекает через узкие щели и капилляры без трения; пр... смотреть

СВЕРХТЕКУЧЕСТЬ

сверхтекучесть ж. Совокупность физических явлений, наблюдаемых в жидком гелии при температуре, близкой к абсолютному нулю.

СВЕРХТЕКУЧЕСТЬ

сверхтекучесть сущ., кол-во синонимов: 1 • текучесть (8) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

состояние квантовой жидкости, при к-ром она протекает через узкие щели и капилляры без трения. Сверхтекучесть 4Не. Жидкий гелий 4Не становитс... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬуникальное состояние жидкости, возникающее в гелии при очень низких температурах. Сверхтекучая жидкость отличается от обычных жидкостей тем, что ее вязкость равна нулю. Она может протекать через тончайшие капилляры без всякого сопротивления. Необычные свойства сверхтекучей жидкости объясняются тем, что поведение жидкости в целом определяется законами квантовой механики. См. также КВАНТОВАЯ МЕXАНИКА.Два изотопа гелия - жидкий 3Не и жидкий 4Не - это единственные жидкости, которые становятся сверхтекучими при низких температурах (атом 3Не имеет такие же химические свойства, как и атом 4Не, но в его ядре одним нейтроном меньше).Сверхтекучий 4Не. Жидкий 4Не, который впервые был получен в 1908, имеет температуру кипения 4,2 К (нуль абсолютной термодинамической шкалы соответствует температуре -273,16? С). Откачивая пар над поверхностью жидкого гелия, можно понизить температуру жидкости примерно до 1 К. В 1930 ученые обратили внимание на то, что при охлаждении жидкого гелия ниже 2,17 К резко меняются многие его свойства. Наиболее заметным изменением является прекращение кипения, указывающее на резкое увеличение теплопроводности. Теплоемкость тоже резко увеличивается, а вязкость, измеренная в тонких капиллярных трубках, падает до нуля. Все это показывает, что в жидком 4Не при температуре ниже 2,17 К происходит фазовый переход в сверхтекучее состояние.Двухжидкостная модель. В 1940-1941 физики Л.Ландау и Л.Тиса независимо друг от друга предложили теоретическую модель сверхтекучего гелия. Ниже 2,17 К жидкий гелий рассматривается как смесь двух жидкостей: нормальной и сверхтекучей. Нормальная жидкость имеет свойства обычной вязкой жидкости. Сверхтекучая же компонента имеет нулевую вязкость, а также нулевую энтропию и энтальпию. Чуть ниже температуры перехода 2,17 К большую часть жидкости составляет нормальная компонента, а сверхтекучая - только малую часть. При дальнейшем охлаждении жидкости сверхтекучей фракции становится все больше, и ниже 1 К жидкость почти полностью оказывается сверхтекучей. На основе такой модели предсказан новый тип звуковых волн (второй звук), которые могут распространяться в сверхтекучей жидкости. Второй звук - это волна температуры, которая регистрируется при помощи термометра (обычные звуковые волны - это волны давления, которые детектируются микрофоном). Экспериментальное наблюдение второго звука (Москва, 1944) подтвердило многие аспекты двухжидкостной модели.Фонтанный эффект. Свойства течения сверхтекучей компоненты необычны, потому что такое течение может быть вызвано не только разностью давлений, но и разностью температур (обычная жидкость течет только вследствие разности давлений). Если погрузить в жидкий гелий электронагреватель, то сверхтекучая компонента потечет к нагреваемой области, а нормальная - к холодной в соответствии с законом сохранения масс. На этом основан впечатляющий эффект, называемый фонтанным. Конец тонкой трубки, набитой очень мелким порошком, опускают в жидкий гелий. Если с помощью электронагревателя нагревать жидкость в трубке, то сверхтекучая компонента потечет внутри трубки, а нормальная вязкая жидкость не сможет течь из-за сопротивления, создаваемого порошком. В результате уровень жидкости внутри трубки повышается и, если продолжать нагрев, жидкость будет бить фонтаном из верхнего конца трубки. Эффект весьма значителен: разность температур в несколько сотых кельвина может создать фонтан до метра высотой.Квантовые эффекты. Необычные свойства сверхтекучей компоненты объясняются тем, что большая часть атомов гелия движется когерентной группой, а не независимо, как атомы любого другого вещества. Наибольшее впечатление эти квантовые эффекты производят, если привести во вращение контейнер с жидким гелием. Вместо того чтобы вращаться вместе с контейнером, как обычная жидкость, сверхтекучая жидкость превращается в сплетение мелких водоворотов, которые называются квантованными вихрями. Картина течения в каждом таком вихре подобна картине течения в смерче, но в гелии скорость потока определяется постоянной Планка, фундаментальной константой квантовой механики (см. также ПЛАНКА ПОСТОЯННАЯ). Существование этих квантованных вихрей во вращающемся гелии было предсказано в 1950 Л.Онсагером и Р.Фейнманом и подтверждено множеством экспериментов. В 1974 были получены первые фотографии квантованных вихрей. Это оказалось возможным благодаря захвату электронов ядром вихря (подобно тому как камни и обломки втягиваются в центр смерча). Захваченные электроны, создающие изображение на люминофорном экране, отмечают положение каждого вихря и наглядно свидетельствуют о макроскопической квантовой природе сверхтекучей жидкости.Фазовые переходы в сверхтекучей жидкости. Уменьшение плотности сверхтекучей жидкости до нуля при температуре 2,17 К и острый пик теплоемкости в этой же точке указывают на то, что при переходе сверхтекучей жидкости в нормальную происходит термодинамический фазовый переход. В своих ранних статьях Онсагер и Фейнман высказывали мнение, что механизм квантованных вихрей может лежать в основе этого фазового перехода, но ни тот, ни другой не проводил расчетов, чтобы подтвердить свою догадку. Только в 1987 математическая теория фазового перехода показала, что их мысль была верна. В этой теории увеличение тепловой энергии жидкости приводит к образованию вихревых витков, подобных кольцам дыма, которые пускают курильщики. При температуре значительно ниже 2,17 К возбуждаются только очень малые вихри, диаметром в несколько ангстрем. Эти вихри, соответствующие нормальной компоненте двухжидкостной модели Ландау, оказывают сопротивление сверхтекучей жидкости, но, будучи очень малыми, они лишь частично уменьшают ее плотность. При повышении температуры образуются вихри все больших и больших размеров. При 2,17 К вихри приобретают размеры, ограниченные только размерами сосуда; это приводит к тому, что плотность сверхтекучей жидкости обращается в нуль и гелий становится нормальной жидкостью.Сверхтекучий 3Не. Редкий изотоп 3Не начали исследовать лишь в 1949. В первых экспериментах 3Не не был сверхтекучим при температурах выше 1 К. Однако физики-теоретики предсказывали, что эта жидкость может стать сверхтекучей, если ее охладить до температур ниже 1 К. Благодаря достижениям техники низких температур группе ученых из Корнеллского университета удалось охладить жидкий 3Не до температур ниже 0,003 К и обнаружить фазовый переход в жидкости. Последующие измерения подтвердили, что жидкий 3Не становится сверхтекучим при охлаждении до сверхнизких температур.Многие свойства сверхтекучего 3Не весьма отличны от свойств 4Не. В 3Не сверхтекучая жидкость состоит из пар атомов 3Не, связанных силами взаимного притяжения. Это похоже на ситуацию в металлических сверхпроводниках, сверхпроводимость которых обусловлена образованием связанных пар электронов (см. также СВЕРXПРОВОДИМОСТЬ). Еще одно различие состоит в том, что атомы 3Не имеют магнитный момент, а атомы 4Не - нет. Это означает, что на сверхтекучий 3Не должны действовать внешние магнитные поля. Дальнейшие исследования сделают более понятной квантовую природу сверхтекучести. См. также ГЕЛИЙ; ФИЗИКА НИЗКИX ТЕМПЕРАТУР.... смотреть

СВЕРХТЕКУЧЕСТЬ

1) Орфографическая запись слова: сверхтекучесть2) Ударение в слове: сверхтек`учесть3) Деление слова на слоги (перенос слова): сверхтекучесть4) Фонетиче... смотреть

СВЕРХТЕКУЧЕСТЬ

Хрусь Хруст Хетт Херь Херес Хер Хекер Хек Хевсур Учет Учесть Учес Утрехт Утес Утереть Устье Усть Устеречь Уесть Увечье Увет Тут Тур Тук Туес Туер Трут Труст Трус Треух Треть Трест Треск Трек Течь Тетчер Тетур Тетр Тетерев Тетер Тесть Тестер Тестев Тест Тес Тереть Терек Текучесть Текст Текс Тверь Счет Счесть Счес Суть Сут Сусек Сукре Сук Суевер Стрет Стр Стечь Стерх Стеречь Стереть Стер Стек Ссек Скутер Скетч Сквер Сечь Сеть Сеттер Сет Сесть Серет Серв Секстет Секс Секрет Секвестр Сек Севр Север Сев Свч Свес Сверху Сверхтекучесть Свертеть Ручьев Ручеек Рух Руте Русь Руст Русеть Ртуть Речь Рет Реветь Рев Кучер Куттер Кут Куст Кус Курс Куверт Кречет Крест Кресс Кетчер Керчь Квт Кверху Етерь Есь Есть Ерь Ересь Хук Хуст Хут Чек Червь Черкес Черт Евр Втечь Чес Честер Втереть Всуе Все Честь Чет Четверт Четверть Вечереть Вечер Вече Четь Ветер Весь Чех Чурек Чуть Вертеть Вертекс Веретье Вереск Верес Век Веер Чутье Верх Вес Вест Весть Вкус... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ, свойство жидкости, которая не обладает вязкостью и потому не обладает сопротивлением к текучести. ГЕЛИЙ II (жидкий гелий при температур... смотреть

СВЕРХТЕКУЧЕСТЬ

свойство квантовой жидкости (4Не и 3Не) протекать без внутр. трения (вязкости) через узкие щели, капилляры и т. п. С. 4Не (при темп-pax ниже Tк = 2,17 ... смотреть

СВЕРХТЕКУЧЕСТЬ

приставка - СВЕРХ; корень - ТЕК; суффикс - УЧ; суффикс - ЕСТЬ; нулевое окончание;Основа слова: СВЕРХТЕКУЧЕСТЬВычисленный способ образования слова: Прис... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ, свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т. п. Сверхтекучесть 4He (при температурах ниже Тк = 1, 17 К) была открыта в 1938 П. Л. Капицей, сверхтекучесть 3Не (ниже 2, 6 ?10-3К) - в 1974 группой американских физиков. Сверхтекучесть связана с переходом части атомов жидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейна конденсация). Эти атомы образуют сверхтекучую компоненту.<br><br><br>... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ - свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т. п. Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938 П. Л. Капицей, сверхтекучесть 3Не (ниже 2,6 ?10-3К) - в 1974 группой американских физиков. Сверхтекучесть связана с переходом части атомов жидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейна конденсация). Эти атомы образуют сверхтекучую компоненту.<br>... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ , свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т. п. Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938 П. Л. Капицей, сверхтекучесть 3Не (ниже 2,6 ?10-3К) - в 1974 группой американских физиков. Сверхтекучесть связана с переходом части атомов жидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейна конденсация). Эти атомы образуют сверхтекучую компоненту.... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ, свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т. п. Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938 П. Л. Капицей, сверхтекучесть 3Не (ниже 2,6 ?10-3К) - в 1974 группой американских физиков. Сверхтекучесть связана с переходом части атомов жидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейна конденсация). Эти атомы образуют сверхтекучую компоненту.... смотреть

СВЕРХТЕКУЧЕСТЬ

, свойство квантовых жидкостей 4He и 3He протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т.п. Сверхтекучесть 4He при T<2,17 К... смотреть

СВЕРХТЕКУЧЕСТЬ

- свойство квантовой жидкости (4Не и 3Не) протекать безвнутреннего трения (вязкости) через узкие щели, капилляры и т. п.Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938П. Л. Капицей, сверхтекучесть 3Не (ниже 2,6 ?10-3К) - в 1974 группойамериканских физиков. Сверхтекучесть связана с переходом части атомовжидкости (при Т?Тк) в состояние с нулевым импульсом (см. Бозе - Эйнштейнаконденсация). Эти атомы образуют сверхтекучую компоненту.... смотреть

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ, свойство квантовых жидкостей 4He и 3He протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т.п. Сверхтекучесть 4He при T&lt;2,17 К открыта П.Л. Капицей в 1938. Сверхтекучесть 3He (при T&lt;2,6?10-3 К) открыта группой американских физиков в 1972 - 74. При сверхтекучести часть атомов жидкости переходит в состояние с нулевым импульсом и образует сверхтекучую компоненту, лишенную вязкости. <br>... смотреть

СВЕРХТЕКУЧЕСТЬ

св-во жидкого гелия "Не при темп-ре Т < 2,17 К и норм. давлении протекать без трения через узкие капилляры и щели. Сверхтекучий гелий (т. н. HeII) обла... смотреть

СВЕРХТЕКУЧЕСТЬ

состояние вещества (жидкого гелия), в котором оно ведет себя как жидкость, не обладающая вязкостью (внутренним трением), поэтому может протекать без трения через очень узкие щели — капилляры малых диаметров. Как и явление сверхпроводимости сверхтекучесть наблюдается при очень низких (сверхнизких) температурах. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: текучесть... смотреть

СВЕРХТЕКУЧЕСТЬ

сверхтеку́честь, сверхтеку́чести, сверхтеку́чести, сверхтеку́честей, сверхтеку́чести, сверхтеку́честям, сверхтеку́честь, сверхтеку́чести, сверхтеку́честью, сверхтеку́честями, сверхтеку́чести, сверхтеку́честях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: текучесть... смотреть

СВЕРХТЕКУЧЕСТЬ

Ударение в слове: сверхтек`учестьУдарение падает на букву: уБезударные гласные в слове: сверхтек`учесть

СВЕРХТЕКУЧЕСТЬ

ж.superfluidity- нуклонная сверхтекучесть- сверхтекучесть атомных ядер- сверхтекучесть электронной жидкости- спиновая сверхтекучесть

СВЕРХТЕКУЧЕСТЬ

сверхтеку'честь, сверхтеку'чести, сверхтеку'чести, сверхтеку'честей, сверхтеку'чести, сверхтеку'честям, сверхтеку'честь, сверхтеку'чести, сверхтеку'честью, сверхтеку'честями, сверхтеку'чести, сверхтеку'честях... смотреть

СВЕРХТЕКУЧЕСТЬ

сущ. жен. рода, только ед. ч.надтекучість

СВЕРХТЕКУЧЕСТЬ

сверхтеку́честь ж.superfluidity* * *superfluidityСинонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

ж. superfluidità f

СВЕРХТЕКУЧЕСТЬ

Начальная форма - Сверхтекучесть, винительный падеж, слово обычно не имеет множественного числа, единственное число, женский род, неодушевленное

СВЕРХТЕКУЧЕСТЬ

СВЕРХТЕКУЧЕСТЬ ж. Совокупность физических явлений, наблюдаемых в жидком гелии при температуре, близкой к абсолютному нулю.

СВЕРХТЕКУЧЕСТЬ

сверхтек'учесть, -иСинонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

сверхтекучестьСинонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

superfluidityСинонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

〔名词〕 超流性Синонимы: текучесть

СВЕРХТЕКУЧЕСТЬ

Superfluidität, Supraflüssigkeit

СВЕРХТЕКУЧЕСТЬ

• supertekutost• supratekutost

СВЕРХТЕКУЧЕСТЬ

сверхтекучесть сверхтек`учесть, -и

СВЕРХТЕКУЧЕСТЬ

физ. звышцякучасць, жен.

СВЕРХТЕКУЧЕСТЬ

superfluidité, suprafluidité

СВЕРХТЕКУЧЕСТЬ

асқын аққыштық

СВЕРХТЕКУЧЕСТЬ

Звышцякучасць

СВЕРХТЕКУЧЕСТЬ

асаағымдылық

СВЕРХТЕКУЧЕСТЬ

аса аққыштық

СВЕРХТЕКУЧЕСТЬ

аса аққыштық

СВЕРХТЕКУЧЕСТЬ АТОМНЫХ ЯДЕР

- коррелированное движение нейтронови протонов в средних и тяжёлых ядрах, аналогичное движению электронов в сверхпроводниках. Идея С. а. я. была выдви... смотреть

T: 193